
Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edit9on

Chapter 6: Process

Synchronization

2 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Objectives

 To present the concept of process synchronization.

 To introduce the critical-section problem, whose solutions can be used

to ensure the consistency of shared data

 To present both software and hardware solutions of the critical-section

problem

 To examine several classical process-synchronization problems

 To explore several tools that are used to solve process synchronization

problems

3 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Chapter 6: Process Synchronization

1. Background

2. The Critical-Section Problem

3. Peterson’s Solution

4. Synchronization Hardware

5. Mutex Locks

6. Semaphores

7. Classic Problems of Synchronization

8. Monitors

9. Synchronization Examples

10. Alternative Approaches

4 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

6.8 MONITORS

5 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Problems with Semaphores

 Incorrect use of semaphore operations:

 signal (mutex) …. wait (mutex)

 wait (mutex) … wait (mutex)

 Omitting of wait (mutex) or signal (mutex) (or both)

 Deadlock and starvation are possible.

6 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Monitors

 A high-level abstraction that provides a convenient and effective mechanism for
process synchronization

 Abstract data type, internal variables only accessible by code within the
procedure

 Only one process may be active within the monitor at a time

 But not powerful enough to model some synchronization schemes

monitor monitor-name

{

 // shared variable declarations

 procedure P1 (…) { …. }

 procedure Pn (…) {……}

 Initialization code (…) { … }

 }

}

7 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Schematic view of a Monitor

8 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Condition Variables

 condition x, y;

 Two operations are allowed on a condition variable:

 x.wait() – a process that invokes the operation is suspended

until x.signal()

 x.signal() – resumes one of processes (if any) that invoked

x.wait()

 If no x.wait() on the variable, then it has no effect on the

variable

9 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

 Monitor with Condition Variables

10 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Condition Variables Choices

 If process P invokes x.signal(), and process Q is suspended in

x.wait(), what should happen next?

 Both Q and P cannot execute in paralel. If Q is resumed, then P

must wait

 Options include

 Signal and wait – P waits until Q either leaves the monitor or it

waits for another condition

 Signal and continue – Q waits until P either leaves the monitor or

it waits for another condition

 Both have pros and cons – language implementer can decide

 Monitors implemented in Concurrent Pascal compromise

 P executing signal immediately leaves the monitor, Q is

resumed

 Implemented in other languages including Mesa, C#, Java

11 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

6.8.2 Monitor Solution to Dining Philosophers

monitor DiningPhilosophers

{

 enum { THINKING; HUNGRY, EATING) state [5] ;

 condition self [5];

 void pickup (int i) {

 state[i] = HUNGRY;

 test(i);

 if (state[i] != EATING) self[i].wait;

 }

 void putdown (int i) {

 state[i] = THINKING;

 // test left and right neighbors

 test((i + 4) % 5);

 test((i + 1) % 5);

 }

12 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Solution to Dining Philosophers (Cont.)

 void test (int i) {

 if ((state[(i + 4) % 5] != EATING) &&

 (state[i] == HUNGRY) &&

 (state[(i + 1) % 5] != EATING)) {

 state[i] = EATING ;

 self[i].signal () ;

 }

 }

 initialization_code() {

 for (int i = 0; i < 5; i++)

 state[i] = THINKING;

 }

}

13 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Solution to Dining Philosophers (Cont.)

 Each philosopher i invokes the operations pickup() and
putdown() in the following sequence:

 DiningPhilosophers.pickup(i);

 EAT

 DiningPhilosophers.putdown(i);

 No deadlock, but starvation is possible

14 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

6.8.3 Monitor Implementation Using Semaphores

 Variables

 semaphore mutex; // (initially = 1)

 semaphore next; // (initially = 0)

 int next_count = 0;

 Each procedure F will be replaced by

 wait(mutex);

 …

 body of F;

 …

 if (next_count > 0)

 signal(next)

 else

 signal(mutex);

 Mutual exclusion within a monitor is ensured

15 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Monitor Implementation – Condition Variables

 For each condition variable x, we have:

 semaphore x_sem; // (initially = 0)

 int x_count = 0;

 The operation x.wait can be implemented as:

 x_count++;

 if (next_count > 0)

 signal(next);

 else

 signal(mutex);

 wait(x_sem);

 x_count--;

16 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Monitor Implementation (Cont.)

 The operation x.signal can be implemented as:

 if (x_count > 0) {

 next_count++;

 signal(x_sem);

 wait(next);

 next_count--;

 }

17 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

6.8.4 Resuming Processes within a Monitor

 If several processes queued on condition x, and x.signal() executed,

which should be resumed?

 FCFS frequently not adequate

 conditional-wait construct of the form x.wait(c)

 Where c is priority number

 Process with lowest number (highest priority) is scheduled next

18 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Single Resource allocation

 Allocate a single resource among competing processes using priority
numbers that specify the maximum time a process plans to use the
resource

 R.acquire(t);

 ...

 access the resurce;

 ...

 R.release;

 Where R is an instance of type ResourceAllocator

19 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

A Monitor to Allocate Single Resource

monitor ResourceAllocator

{

 boolean busy;

 condition x;

 void acquire(int time) {

 if (busy)

 x.wait(time);

 busy = TRUE;

 }

 void release() {

 busy = FALSE;

 x.signal();

 }

initialization code() {

 busy = FALSE;

 }

}

20 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

6.9 SYNCHRONIZATION

EXAMPLES

21 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Windows Synchronization

 Uses interrupt masks to protect access to global resources on

uniprocessor systems

 Uses spinlocks on multiprocessor systems

 Spinlocking-thread will never be preempted

 Also provides dispatcher objects user-land which may act mutexes,

semaphores, events, and timers

 Events

 An event acts much like a condition variable

 Timers notify one or more thread when time expired

 Dispatcher objects either signaled-state (object available) or non-

signaled state (thread will block)

22 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Linux Synchronization

 Linux:

 Prior to kernel Version 2.6, disables interrupts to implement short

critical sections

 Version 2.6 and later, fully preemptive

 Linux provides:

 Semaphores

 atomic integers

 spinlocks

 reader-writer versions of both

 On single-cpu system, spinlocks replaced by enabling and disabling

kernel preemption

23 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Solaris Synchronization

 Implements a variety of locks to support multitasking, multithreading

(including real-time threads), and multiprocessing

 Uses adaptive mutexes for efficiency when protecting data from short

code segments

 Starts as a standard semaphore spin-lock

 If lock held, and by a thread running on another CPU, spins

 If lock held by non-run-state thread, block and sleep waiting for signal of

lock being released

 Uses condition variables

 Uses readers-writers locks when longer sections of code need access

to data

 Uses turnstiles to order the list of threads waiting to acquire either an

adaptive mutex or reader-writer lock

 Turnstiles are per-lock-holding-thread, not per-object

 Priority-inheritance per-turnstile gives the running thread the highest of

the priorities of the threads in its turnstile

24 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Pthreads Synchronization

 Pthreads API is OS-independent

 It provides:

 mutex locks

 condition variable

 Non-portable extensions include:

 read-write locks

 spinlocks

25 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

6.10 ALTERNATIVE

APPROACHES

26 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

6.10.1 Transactional Memory

 A memory transaction is a sequence of read-write operations to
memory that are performed atomically.

 void update()

 {

 /* read/write memory */

 }

27 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

6.10.2 OpenMP

 OpenMP is a set of compiler directives and API that support parallel
progamming.

 void update(int value)

 {

 #pragma omp critical

 {

 count += value

 }

 }

The code contained within the #pragma omp critical directive is
treated as a critical section and performed atomically.

28 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

6.10.3 Functional Programming

Languages

 Functional programming languages offer a different paradigm than
procedural languages in that they do not maintain state.

 Variables are treated as immutable and cannot change state once they
have been assigned a value.

 There is increasing interest in functional languages such as Erlang and
Scala for their approach in handling data races.

Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edit9on

End of Chapter 6

