Chapter 6: Process
Synchronization

Operating System Concepts — 9t Edit9on Silberschatz, Galvin and Gagne © 2013

7 Objectives

'é\,.

B To present the concept of process synchronization.

B To introduce the critical-section problem, whose solutions can be used
to ensure the consistency of shared data

B To present both software and hardware solutions of the critical-section
problem

To examine several classical process-synchronization problems

To explore several tools that are used to solve process synchronization
problems

Operating System Concepts — 9t" Edition 2 Silberschatz, Galvin and Gagne © 2013

=

‘@}4 Chapter 6: Process Synchronization

€\

Background

The Critical-Section Problem
Peterson’s Solution

Synchronization Hardware

Mutex Locks

Semaphores

Classic Problems of Synchronization
Monitors

© ©o N o g b~ WD PRF

Synchronization Examples
10. Alternative Approaches

Operating System Concepts — 9t" Edition 3 Silberschatz, Galvin and Gagne © 2013

6.8 MONITORS

v

Operating System Concepts — 9t" Edition 4 Silberschatz, Galvin and Gagne © 2013

~$»7 Problems with Semaphores

B Incorrect use of semaphore operations:
e signal (mutex) wait (mutex)

e wait (mutex) ... wait (mutex)

e Omitting of wait (mutex) or signal (mutex) (or both)

m Deadlock and starvation are possible.

%
\
e e\
"
LS
U 295

Operating System Concepts — 9t" Edition 5 Silberschatz, Galvin and Gagne © 2013

P -
ty— Monitors

® A high-level abstraction that provides a convenient and effective mechanism for
process synchronization

®m Abstract data type, internal variables only accessible by code within the
procedure

® Only one process may be active within the monitor at a time
® But not powerful enough to model some synchronization schemes

monitor monitor-name

{
// shared variable declarations
procedure P1 (..) { ... }

procedure Pn (..) {....}

Initialization code (..) { .. }

S /%;;’ Y .1\\}
> -
2 ‘: 3

A

Operating System Concepts — 9t" Edition 6 Silberschatz, Galvin and Gagne © 2013

4%’ Schematic view of a Monitor

entry queue

shared data

v

operations
initialization
code

Operating System Concepts — 9t" Edition 7 Silberschatz, Galvin and Gagne © 2013

=$»/ Condition Variables

B condition x, y;
® Two operations are allowed on a condition variable:

® x.wait () - aprocess thatinvokes the operation is suspended
until x. signal ()

® x.signal () -resumes one of processes (if any) that invoked
x.wait ()

» If no x.wait () on the variable, then it has no effect on the
variable

Operating System Concepts — 9t" Edition 8 Silberschatz, Galvin and Gagne © 2013

N _ _ . :
~$%»7 Monitor with Condition Variables

L8 s

entry queue

shared data

queues associated with

x, y conditions y -

~

operations

initialization
code

Operating System Concepts — 9t" Edition 9 Silberschatz, Galvin and Gagne © 2013

)

(™ . : :
~$»7 Condition Variables Choices

m |f process P invokes x.signal () , and process Q is suspended in
x.wait (), what should happen next?

e Both Q and P cannot execute in paralel. If Q is resumed, then P
must wait

m Options include

e Signal and wait — P waits until Q either leaves the monitor or it
waits for another condition

e Signal and continue — Q waits until P either leaves the monitor or
it waits for another condition

e Both have pros and cons — language implementer can decide
e Monitors implemented in Concurrent Pascal compromise

» P executing signal immediately leaves the monitor, Q is
resumed

e Implemented in other languages including Mesa, C#, Java

S\

<A

Operating System Concepts — 9t Edition 10 Silberschatz, Galvin and Gagne 0 2013

=

‘«f%y{ 6.8.2 Monitor Solution to Dining Philosophers

monitor DiningPhilosophers

{
enum { THINKING, HUNGRY, EATING) state [5]
condition self [5];

.
14

void pickup (int 1) {
state[i] = HUNGRY;
test (1)
if (state[i] != EATING) self[i].wait;

void putdown (int i) {
state[i1] = THINKING;
// test left and right neighbors
test ((1 + 4) % 5)

$ 5);
test((1i + 1) % 5);

Operating System Concepts — 9t Edition 11 Silberschatz, Galvin and Gagne © 2013

ha ;ﬁ Solution to Dining Philosophers (Cont.)

[
&\,

volid test (int 1) {

if ((state[(i1 + 4) % 5] != EATING) &&
(state[i] == HUNGRY) &&
(state[(1 + 1) % 5] != EATING)) {

state[i1] = EATING ;
self[i].signal () ;

) A
for (int 1 = 0; 1 < 5; 1i++)
state[i] = THINKING;

initialization code (

Operating System Concepts — 9t Edition 12 Silberschatz, Galvin and Gagne © 2013

=

,«,mdu _ .. .
~%77 Solution to Dining Philosophers (Cont.)

m Each philosopher i invokes the operations pickup () and
putdown () in the following sequence:

DiningPhilosophers.pickup (i) ;
EAT
DiningPhilosophers.putdown (i) ;

B No deadlock, but starvation is possible

. \u'\
3 2 3\
" — o
s <
7 WS
“ POV

Operating System Concepts — 9t Edition 13 Silberschatz, Galvin and Gagne 0 2013

=

-

i

— _ _ .
=3 %/ 6.8.3 Monitor Implementation Using Semaphores

®m Variables

semaphore mutex; // (initially
semaphore next; // (initially
int next count = 0;

m Each procedure F will be replaced by
wait (mutex) ;
body of F;
if (next count > 0)
signal (next)
else

signal (mutex) ;

® Mutual exclusion within a monitor is ensured

Operating System Concepts — 9" Edition 14

1)
0)

Silberschatz, Galvin and Gagne © 2013

=

-

‘fff%»,‘r(Monitor Implementation — Condition Variables

B For each condition variable x, we have:

semaphore x sem; // (initially = 0)
int x count = 0;

® The operation x.wait can be implemented as:

X _count++;
if (next count > 0)
signal (next) ;
else
signal (mutex) ;
wait(x_sem) ;
X _count--;

. A\ \'\
~ 2 3\
" — 2l
y <
7 WS
“l X

Silberschatz, Galvin and Gagne © 2013

Operating System Concepts — 9" Edition 15

~$%7 Monitor Implementation (Cont.)

® The operation x.signal can be implemented as:

if (x count > 0) {
next count++;
signal (x_sem) ;
wait (next) ;
next count--;

Sl
ST :’&\ \

vk “v »
A A%

Operating System Concepts — 9t Edition 16 Silberschatz, Galvin and Gagne © 2013

y

‘r ,A’T"(N.

6.8.4 Resuming Processes within a Monitor

m |If several processes queued on condition x, and x.signal() executed,
which should be resumed?

FCFS frequently not adequate
conditional-wait construct of the form x.wait(c)
e Where cis priority number
e Process with lowest number (highest priority) is scheduled next

NAAY :\ \\
X 5
-
i “‘ ’
A N

17 Silberschatz, Galvin and Gagne © 2013

Operating System Concepts — 9" Edition

~$»/ Single Resource allocation

m Allocate a single resource among competing processes using priority
numbers that specify the maximum time a process plans to use the
resource

R.acquire(t) ;

access the resurce;

R.release;

®m Where R is an instance of type ResourceAllocator

Operating System Concepts — 9t Edition 18 Silberschatz, Galvin and Gagne 0 2013

'_ﬂﬂan%

|
‘}l‘} \

7 A Monitor to Allocate Single Resource

monitor ResourceAllocator
{
boolean busy;
condition x;
void acquire (int time) {
if (busy)
x.wait (time) ;
busy = TRUE;
}
void release () {
busy = FALSE;
X.signal () ;
}
initialization code () {
busy = FALSE;
}

Operating System Concepts — 9t" Edition 19

Silberschatz, Galvin and Gagne © 2013

6.9 SYNCHRONIZATION
EXAMPLES

Ve

Operating System Concepts — 9t Edition 20 Silberschatz, Galvin and Gagne © 2013

,ﬁ_m.kai\] . .
=$»/ Windows Synchronization

B Uses interrupt masks to protect access to global resources on
uniprocessor systems

m Uses spinlocks on multiprocessor systems
e Spinlocking-thread will never be preempted

m Also provides dispatcher objects user-land which may act mutexes,
semaphores, events, and timers

e Events
» An event acts much like a condition variable
e Timers notify one or more thread when time expired

e Dispatcher objects either signaled-state (object available) or non-
signaled state (thread will block)

Silberschatz, Galvin and Gagne © 2013

Operating System Concepts — 9" Edition 21

=$»/ Linux Synchronization

B Linux;

e Prior to kernel Version 2.6, disables interrupts to implement short
critical sections

e Version 2.6 and later, fully preemptive
® Linux provides:

e Semaphores

e atomic integers

e spinlocks

e reader-writer versions of both

B On single-cpu system, spinlocks replaced by enabling and disabling
kernel preemption

SN\
- <
WS

“l A9k

Silberschatz, Galvin and Gagne © 2013

Operating System Concepts — 9" Edition 22

w».l

r o Solarls Synchronization

Implements a variety of locks to support multitasking, multithreading
(including real-time threads), and multiprocessing

Uses adaptive mutexes for efficiency when protecting data from short
code segments

e Starts as a standard semaphore spin-lock
e If lock held, and by a thread running on another CPU, spins

e |If lock held by non-run-state thread, block and sleep waiting for signal of
lock being released

Uses condition variables

Uses readers-writers locks when longer sections of code need access
to data

Uses turnstiles to order the list of threads waiting to acquire either an
adaptive mutex or reader-writer lock

e Turnstiles are per-lock-holding-thread, not per-object

Priority-inheritance per-turnstile gives the running thread the highest of
the priorities of the threads in its turnstile

Operating System Concepts — 9t Edition 23 Silberschatz, Galvin and Gagne 0 2013

4%’ Pthreads Synchronization

m Pthreads APl is OS-independent
®m |t provides:
e mutex locks
e condition variable
® Non-portable extensions include:
e read-write locks
e spinlocks

Operating System Concepts — 9" Edition 24

Sl
ST :’&\ \

vk “v »
2 PN

Silberschatz, Galvin and Gagne © 2013

6.10 ALTERNATIVE
APPROACHES

Ve

Operating System Concepts — 9t Edition 25 Silberschatz, Galvin and Gagne © 2013

~$»7 6.10.1 Transactional Memory

B A memory transaction is a sequence of read-write operations to
memory that are performed atomically.

void update ()
{

/* read/write memory */

X
\
e e\
"
LS
U 2957

Operating System Concepts — 9t Edition 26 Silberschatz, Galvin and Gagne © 2013

‘r{:-"j 6.10.2 OpenMP

® OpenMP is a set of compiler directives and API that support parallel
progamming.

void update (int value)

{
#pragma omp critical
{
count += value
}
}

The code contained within the #pragma omp critical directive is
treated as a critical section and performed atomically.

Operating System Concepts — 9t Edition 27 Silberschatz, Galvin and Gagne 0 2013

_~176.10.3 Functional Programming
Languages

o

® Functional programming languages offer a different paradigm than
procedural languages in that they do not maintain state.

® Variables are treated as immutable and cannot change state once they
have been assigned a value.

B There is increasing interest in functional languages such as Erlang and
Scala for their approach in handling data races.

Operating System Concepts — 9t Edition 28 Silberschatz, Galvin and Gagne 0 2013

End of Chapter 6

Operating System Concepts — 9t Edit9on Silberschatz, Galvin and Gagne © 2013

