Chapter 5: CPU Scheduling

Operating System Concepts — 9" Edit9on Silberschatz, Galvin and Gagne © 2013

=

7 Chapter 6: CPU Scheduling

L

5

L\

“(

Basic Concepts

Scheduling Criteria
Scheduling Algorithms

Thread Scheduling
Multiple-Processor Scheduling
Real-Time CPU Scheduling
Operating Systems Examples

© N o 0 K L N BE

Algorithm Evaluation

SO
=)
A AR

Operating System Concepts — 9t" Edition 2 Silberschatz, Galvin and Gagne © 2013

- N

e : '

B To introduce CPU scheduling, which is the basis for multiprogrammed
operating systems

To describe various CPU-scheduling algorithms

To discuss evaluation criteria for selecting a CPU-scheduling algorithm
for a particular system

® To examine the scheduling algorithms of several operating systems

Operating System Concepts — 9t" Edition 3 Silberschatz, Galvin and Gagne © 2013

5.1 BASIC CONCEPTS

A !51\;&‘

Operating System Concepts — 9t" Edition 4 Silberschatz, Galvin and Gagne © 2013

“$%7 5.1.1 CPU-I/O Burst Cycle

® In a single-processor system, only one
process can run at a time. Others must
wait until the CPU is free and can be
rescheduled.

® objective of multiprogramming : to
maximize CPU utilization

m CPU-I/O Burst Cycle — Process
execution consists of a cycle of CPU
execution and I/O wait

m CPU burst followed by I/O burst

B CPU burst distribution is of main
concern

Operating System Concepts — 9t" Edition 5

load store
add store
read from file

wait for I/O

store increment
index
write to file

wait for I/0

load store
add store
read from file

wait for /O

CPU burst

I/O burst

CPU burst

I/O burst

CPU burst

I/O burst

Silberschatz, Galvin and Gagne © 2013

PP o .
“$%7 Histogram of CPU-burst Times

| @

160

140 \
120

—r

o

(=}
e

frequency
[0}
o
e

40 \
20 \

0 8 16 24 32 40
burst duration (milliseconds)

A 4

‘a/l/ N
Silberschatz, Galvin and Gagne © 2013

Operating System Concepts — 9t" Edition 6

- - -
~$77 5.1.3 Preemptive Scheduling

B Short-term scheduler selects from among the processes in ready
gueue, and allocates the CPU to one of them

e Queue may be ordered in various ways

m CPU scheduling decisions may take place when a process:

1.

Switches from running to waiting state

2. Switches from running to ready state
3.
4

Switches from waiting to ready
Terminates

Scheduling under 1 and 4 is nonpreemptive

All other scheduling is preemptive

e Consider access to shared data

e Consider preemption while in kernel mode
e Consider interrupts occurring during crucial OS activities

Operating System Concepts — 9t" Edition 7

& - =35 ‘)
> vﬂ‘ﬁ;‘ ‘\\/
TN
4 <

2 ‘: 3

Silberschatz, Galvin and Gagne © 2013

“»77 5.1.4 Dispatcher

m Dispatcher module gives control of the CPU to the process selected by
the short-term scheduler; this involves:

e switching context
e switching to user mode

e jumping to the proper location in the user program to restart that
program

m Dispatch latency — time it takes for the dispatcher to stop one process
and start another running

S

- <
WS

“d A9

Operating System Concepts — 9t" Edition 8 Silberschatz, Galvin and Gagne © 2013

5.2 SCHEDULING CRITERIA

Ve

Operating System Concepts — 9t" Edition 9 Silberschatz, Galvin and Gagne © 2013

1,

/”’m"\,{\‘ - I i
“%7/ Scheduling Criteria

m CPU utilization — keep the CPU as busy as possible

® Throughput —# of processes that complete their execution per time
unit

B Turnaround time — amount of time to execute a particular process

m Waiting time — amount of time a process has been waiting in the
ready queue

®m Response time — amount of time it takes from when a request was
submitted until the first response is produced, not output (for time-
sharing environment)

y "(/
A ;‘:v 3

Silberschatz, Galvin and Gagne © 2013

Operating System Concepts — 9t" Edition 10

=

‘““}r’ Scheduling Algorithm Optimization Criteria

Max CPU utilization
Max throughput
Min turnaround time
Min waiting time

Min response time

m for interactive systems (such as desktop systems), it is more important
to minimize the variance in the response time than to minimize the
average response time.

® An accurate illustration should involve many processes, each a
sequence of several hundred CPU bursts and 1/0O bursts.

e For simplicity, though, we consider only one CPU burst (in
milliseconds) per process in our examples.

£ - = TS\ . ‘)
> vﬂ‘ﬁ;‘ ‘\\/
= N
4 <

« ‘: 3

Operating System Concepts — 9t Edition 11 Silberschatz, Galvin and Gagne 0 2013

5.3 SCHEDULING
ALGORITHMS

, A

o ‘\\
V. “\\&)
“ 9%

Operating System Concepts — 9th Edition 12 Silberschatz, Galvin and Gagne © 2013

44“F”vhl 5 . . .
‘ﬁ”*’;»,‘r(5.3.1 First- Come, First-Served (FCFS) Scheduling

Process Burst Time
P, 24
P, 3
P, 3

®m Suppose that the processes arrive in the order: P, , P, , P,
The Gantt Chart for the schedule is:

0 24 27 30

® Waiting time for P, =0; P, =24; P;=27
® Average waiting time: (0 + 24 + 27)/3 =17

. \u'\
3 2 3\
" — al
s <
7 WS
“l X

Silberschatz, Galvin and Gagne © 2013

Operating System Concepts — 9t" Edition 13

“$%7 FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:
P2 y P3 y Pl
® The Gantt chart for the schedule is:

0 3 6 30
Waiting time for P, =6;P,=0.P;=3
Average waiting time: (6+ 0+ 3)/3=3

Much better than previous case

Convoy effect - short process behind long process
e Consider one CPU-bound and many 1/0O-bound processes

Operating System Concepts — 9t Edition 14 Silberschatz, Galvin and Gagne 0 2013

‘“v" 5.3.2 Shortest-Job-First (SJF) Scheduling

B Associate with each process the length of its next CPU burst
e Use these lengths to schedule the process with the shortest time

m SJFis optimal — gives minimum average waiting time for a given set of
processes

e The difficulty is knowing the length of the next CPU request
e Could ask the user

. \ :\ A\
S e 5
-
W “‘ B
A X

Operating System Concepts — 9t Edition 15 Silberschatz, Galvin and Gagne 0 2013

g/“w'\as
“»77 Example of SJF

Process Burst Time
P, 6
P, 8
P, 7
P, 3

0 3 9 16 24

m Average waitingtime=(3+16+9+0)/4=7

X
\
e e\
W
LS
U 295

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t" Edition 16

=

~$7/ Determining Length of Next CPU Burst

m Can only estimate the length — should be similar to the previous one
e Then pick process with shortest predicted next CPU burst

m Can be done by using the length of previous CPU bursts, using
exponential averaging

1. t, =actual lengthof n'™ CPU burst
2. 7,1 = predicted value for the next CPU burst
3. ¢,0<a<1
4. Define: 7., =at +(1—a)r..
m Commonly, a setto

® Preemptive version called shortest-remaining-time-first

S e ‘E,H
- <
WS

“l A9k

Operating System Concepts — 9t Edition 17 Silberschatz, Galvin and Gagne 0 2013

=

4% Prediction of the Length of the Next CPU Burst

L\ ¥

12 /—"‘_

5 10 ~
/

5 //
tl

6 _/,

4

2

CPU burst (1) 6 4 6 4 13 13 13

"guess” (1) 10 8 6 6 5 9 1 12

A X
Operating System Concepts — 9th Edition 18 Silberschatz, Galvin and Gagne © 2013

y

A'T"(N.“\\ I .
‘ww" Examples of Exponential Averaging

m a=0
® Tha1 = Ty
e Recent history does not count
m o=1
® T = ot
e Only the actual last CPU burst counts
m |f we expand the formula, we get:
Tp—oat+1l-a)at, ;+...
+H(l-aYot, ;+...
|(1 - o)n +1 T,

m Since both a and (1 - o) are less than or equal to 1, each successive
term has less weight than its predecessor

NAAY :\ \\
X 5
-
i “‘ ’
A N

Operating System Concepts — 9t Edition 19 Silberschatz, Galvin and Gagne 0 2013

=

“$»/ Example of Shortest-remaining-time-first

®m Now we add the concepts of varying arrival times and preemption to

the analysis
Process Arrival Time Burst Time
P, 0 8
P, 1 4
P, 2 9
P, 3 5
B Preemptive SJF Gantt Chart
P, P, P, P, P,
0 1 5 10 17 26

® Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 26/4 = 6.5 msec

SR
- <
WS

“d A9

Operating System Concepts — 9t Edition 20 Silberschatz, Galvin and Gagne 0 2013

~%$77 5.3.3 Priority Scheduling

A priority number (integer) is associated with each process

The CPU is allocated to the process with the highest priority (smallest
integer = highest priority)

e Preemptive
e Nonpreemptive

SJF is priority scheduling where priority is the inverse of predicted next
CPU burst time

Problem = Starvation — low priority processes may never execute

Solution = Aging — as time progresses increase the priority of the
process

& - =35 ‘)
> vﬂ‘ﬁ;‘ ‘\\/
TN
4 <
2 ‘: 3

Operating System Concepts — 9t Edition 21 Silberschatz, Galvin and Gagne 0 2013

%f”?,‘.-—(Example of Priority Scheduling

Process Burst Time Priority
P, 10 3
P, 1 1
P, 2 4
P, 1 5
P, 5 2

®m Priority scheduling Gantt Chart

P, P, P, P

0 1 6 16 18 19

m Average waiting time = 8.2 msec

%
\
e e\
"
LS
U 295

Operating System Concepts — 9t Edition 22 Silberschatz, Galvin and Gagne 0 2013

w».l

5%/ 5.3.4 Round Robin (RR)

B Each process gets a small unit of CPU time (time quantum q), usually
10-100 milliseconds. After this time has elapsed, the process is
preempted and added to the end of the ready queue.

m If there are n processes in the ready queue and the time quantum is q,
then each process gets 1/n of the CPU time in chunks of at most g time
units at once. No process waits more than (n-1)qg time units.

® Timer interrupts every quantum to schedule next process
m Performance
e (large = FIFO

e ¢ small = q must be large with respect to context switch, otherwise
overhead is too high

Operating System Concepts — 9t Edition 23 Silberschatz, Galvin and Gagne 0 2013

=

”'?m} \ . .
“%7/ Example of RR with Time Quantum =4

Process Burst Time
P, 24
P, 3
P, 3

0 4 7 10 14 18 22 26 30

Typically, higher average turnaround than SJF, but better response
g should be large compared to context switch time
g usually 10ms to 100ms, context switch < 10 usec

X e ‘E,H
e <
B

“ AR

Operating System Concepts — 9t Edition 24 Silberschatz, Galvin and Gagne 0 2013

“$%7 Time Quantum and Context Switch Time

&\

process time = 10 quantum context
switches
12 0
0 10
6 1
0 6 10
1 9

Operating System Concepts — 9th Edition 25 Silberschatz, Galvin and Gagne © 2013

Py
&

| @

* Turnaround Time Varies With The Time Quantum

12.5

12.0

11.5

11.0

10.5

10.0

average turnaround time

9.5

9.0

N\

process | time
P, 6
P 3
P, 1
P, 7

1 2 3

4

5

6

time quantum

Operating System Concepts — 9t" Edition

26

7

80% of CPU bursts
should be shorter than q

Silberschatz, Galvin and Gagne © 2013

x”m’“lv:% "
“%77 5.3.5 Multilevel Queue

B Ready queue is partitioned into separate queues, eg:
e foreground (interactive)
e background (batch)
Process permanently in a given queue
Each queue has its own scheduling algorithm:
e foreground — RR
e background — FCFS
m Scheduling must be done between the queues:

e Fixed priority scheduling; (i.e., serve all from foreground then from
background). Possibility of starvation.

e Time slice — each queue gets a certain amount of CPU time which
it can schedule amongst its processes; i.e., 80% to foreground in
RR

e 20% to background in FCFS

T
SN
P/ AN

Silberschatz, Galvin and Gagne © 2013

Operating System Concepts — 9t" Edition 27

7 Multilevel Queue Scheduling

highest priority

> interactive editing processes [——

—> batch processes m———.

) student processes E—

lowest priority

Silberschatz, Galvin and Gagne © 2013

Operating System Concepts — 9t" Edition 28

~%$77 5.3.6 Multilevel Feedback Queue

B A process can move between the various queues; aging can be
implemented this way

m Multilevel-feedback-queue scheduler defined by the following
parameters:

e number of queues

e scheduling algorithms for each queue

e method used to determine when to upgrade a process
e method used to determine when to demote a process

e method used to determine which queue a process will enter when
that process needs service

£ - = TS\ . ‘)
> vﬂ‘ﬁ;‘ ‘\\/
= N
4 <
« ‘: 3

Operating System Concepts — 9t Edition 29 Silberschatz, Galvin and Gagne 0 2013

)’g

~

A".‘T’W’J. \ 1
=37/ Example of Multilevel Feedback Queue

m Three queues:

e Qy,— RR with time quantum 8 milliseconds
e Q;—RRtime quantum 16 milliseconds

e Q,-FCFS
» quantum = 8 i
m Scheduling
e A new job enters queue Q, which is servec
» When it gains CPU, job receives 8 . quantum = 16
milliseconds

» If it does not finish in 8 milliseconds, jc
moved to queue Q, T

e At Q, jobis again served FCFS and receiv
16 additional milliseconds

A 4

Y

FCFS

» If it still does not complete, it is preempted
and moved to queue Q,

o

= £ ~ %l
»
WS
<A

A

Operating System Concepts — 9t Edition 30 Silberschatz, Galvin and Gagne 0 2013

5.4 THREAD SCHEDULING

Ve

Operating System Concepts — 9th Edition 31 Silberschatz, Galvin and Gagne © 2013

m.l

o 5 4.1 Contention Scope

m Distinction between user-level and kernel-level threads
®m When threads supported, threads scheduled, not processes

® Many-to-one and many-to-many models, thread library schedules user-
level threads to run on LWP

e Known as process-contention scope (PCS) since scheduling
competition is within the process

e Typically done via priority set by programmer

m Kernel thread scheduled onto available CPU is system-contention
scope (SCS) — competition among all threads in system

e Systems using the one-to-one model (Section 4.3.2), such as
Windows, Linux, and Solaris, schedule threads using only SCS.

:»y"i;ﬁ b
7 WS
A P

Operating System Concepts — 9t Edition 32 Silberschatz, Galvin and Gagne 0 2013

“$%7 5.4.2 Pthread Scheduling

m APl allows specifying either PCS or SCS during thread creation

e PTHREAD_SCOPE_PROCESS schedules threads using PCS
scheduling

e PTHREAD_SCOPE_SYSTEM schedules threads using SCS
scheduling

m Can be limited by OS — Linux and Mac OS X only allow
PTHREAD SCOPE_SYSTEM

Operating System Concepts — 9t Edition 33 Silberschatz, Galvin and Gagne 0 2013

“$7’ Pthread Scheduling API

#include <pthread.h>

#include <stdio.h>
#define NUM THREADS 5
int main(int argc, char *argv[]) {

int i, scope;
pthread t tid[NUM THREADS];

pthread attr t attr;
/* get the default attributes */
pthread attr init (&attr);

/* first inquire on the current scope */
if (pthread attr getscope(&attr, &scope) != 0)

fprintf (stderr, "Unable to get scheduling scope\n");
else {
1f (scope == PTHREAD SCOPE PROCESS)
printf ("PTHREAD SCOPE PROCESS") ;
else if (scope == PTHREAD SCOPE SYSTEM)
printf ("PTHREAD SCOPE SYSTEM") ;

else
fprintf (stderr, "Illegal scope value.\n");

}

Operating System Concepts — 9t Edition 34 Silberschatz, Galvin and Gagne 0 2013

L N

\ 4ng‘é .
“$7’ Pthread Scheduling API

/* set the scheduling algorithm to PCS or SCS */
pthread attr setscope (&attr, PTHREAD SCOPE SYSTEM) ;

/* create the threads */
for (1 = 0; 1 < NUM_THREADS; i++)

pthread create(&tid[1], &attr, runner,NULL) ;

/* now join on each thread */
for (1 = 0; 1 < NUM THREADS; 1i++)

pthread join(tid[i], NULL);
}
/* Each thread will begin control in this function */

volid *runner (void *param)

{

/* do some work ... */

pthread exit (0);

Operating System Concepts — 9t Edition 35 Silberschatz, Galvin and Gagne 0 2013

5.9 MULTIPLE-PROCESSOR
SCHEDULING

v

Operating System Concepts — 9th Edition 36 Silberschatz, Galvin and Gagne © 2013

gr%;"},&55l Approaches to Multiple Processor
L * Scheduling

m CPU scheduling more complex when multiple CPUs are available

B Homogeneous processors within a multiprocessor

B Asymmetric multiprocessing — only one processor accesses the
system data structures, alleviating the need for data sharing

B Symmetric multiprocessing (SMP) — each processor is self-
scheduling, all processes in common ready queue, or each has its own
private queue of ready processes

e Currently, most common

. \ :\ A\
X 5
e
-
i “‘ ’
A N

Silberschatz, Galvin and Gagne © 2013

Operating System Concepts — 9t" Edition 37

aﬂ“Ja% - .
‘fﬁ”?}rf 5.5.2 Processor Affinity

B Processor affinity — process has affinity for processor on which it is
currently running

e soft affinity
e hard affinity
e Variations including processor sets

CPU CPU

fast access “’6& fast access
@SS

memory memory

computer

Note that memory-placement algorithms can also consider affinity

‘\A

\“n“
S ‘& :

W
A e

Operating System Concepts — 9t Edition 38 Silberschatz, Galvin and Gagne 0 2013

~$¥/ 5.5.3 Load Balancing

m If SMP, need to keep all CPUs loaded for efficiency
Load balancing attempts to keep workload evenly distributed

Push migration — periodic task checks load on each processor, and if
found pushes task from overloaded CPU to other CPUs

m Pull migration — idle processors pulls waiting task from busy
processor

NAAY :\ \\
X 5
-
i “‘ ’
A N

Silberschatz, Galvin and Gagne © 2013

Operating System Concepts — 9t" Edition 39

y

A"ff’""'xqe 1
“»77 5.5.4 Multicore Processors

B Recent trend to place multiple processor cores on same physical chip
m Faster and consumes less power
® Multiple threads per core also growing

e Takes advantage of memory stall to make progress on another
thread while memory retrieve happens

Operating System Concepts — 9t Edition 40 Silberschatz, Galvin and Gagne 0 2013

=

>

Multithreaded Multicore System

C compute cycle memory stall cycle
thread
—_— & M M M M
time
thread
: -| G G G
thr
C 5] M M
time
Operating System Concepts — 9t" Edition 41

N \
I B

AN

LS
A

Silberschatz, Galvin and Gagne © 2013

