
Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edit9on

Chapter 5: CPU Scheduling

2 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Chapter 6: CPU Scheduling

1. Basic Concepts

2. Scheduling Criteria

3. Scheduling Algorithms

4. Thread Scheduling

5. Multiple-Processor Scheduling

6. Real-Time CPU Scheduling

7. Operating Systems Examples

8. Algorithm Evaluation

3 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Objectives

 To introduce CPU scheduling, which is the basis for multiprogrammed

operating systems

 To describe various CPU-scheduling algorithms

 To discuss evaluation criteria for selecting a CPU-scheduling algorithm

for a particular system

 To examine the scheduling algorithms of several operating systems

4 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

5.1 BASIC CONCEPTS

5 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

5.1.1 CPU-I/O Burst Cycle

 In a single-processor system, only one

process can run at a time. Others must

wait until the CPU is free and can be

rescheduled.

 objective of multiprogramming : to

maximize CPU utilization

 CPU–I/O Burst Cycle – Process

execution consists of a cycle of CPU

execution and I/O wait

 CPU burst followed by I/O burst

 CPU burst distribution is of main

concern

6 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Histogram of CPU-burst Times

7 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

5.1.3 Preemptive Scheduling

 Short-term scheduler selects from among the processes in ready

queue, and allocates the CPU to one of them

 Queue may be ordered in various ways

 CPU scheduling decisions may take place when a process:

1. Switches from running to waiting state

2. Switches from running to ready state

3. Switches from waiting to ready

4. Terminates

 Scheduling under 1 and 4 is nonpreemptive

 All other scheduling is preemptive

 Consider access to shared data

 Consider preemption while in kernel mode

 Consider interrupts occurring during crucial OS activities

8 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

5.1.4 Dispatcher

 Dispatcher module gives control of the CPU to the process selected by

the short-term scheduler; this involves:

 switching context

 switching to user mode

 jumping to the proper location in the user program to restart that

program

 Dispatch latency – time it takes for the dispatcher to stop one process

and start another running

9 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

5.2 SCHEDULING CRITERIA

10 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Scheduling Criteria

 CPU utilization – keep the CPU as busy as possible

 Throughput – # of processes that complete their execution per time

unit

 Turnaround time – amount of time to execute a particular process

 Waiting time – amount of time a process has been waiting in the

ready queue

 Response time – amount of time it takes from when a request was

submitted until the first response is produced, not output (for time-

sharing environment)

11 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Scheduling Algorithm Optimization Criteria

 Max CPU utilization

 Max throughput

 Min turnaround time

 Min waiting time

 Min response time

 for interactive systems (such as desktop systems), it is more important

to minimize the variance in the response time than to minimize the

average response time.

 An accurate illustration should involve many processes, each a

sequence of several hundred CPU bursts and I/O bursts.

 For simplicity, though, we consider only one CPU burst (in

milliseconds) per process in our examples.

12 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

5.3 SCHEDULING

ALGORITHMS

13 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

5.3.1 First- Come, First-Served (FCFS) Scheduling

 Process Burst Time

 P1 24

 P2 3

 P3 3

 Suppose that the processes arrive in the order: P1 , P2 , P3

The Gantt Chart for the schedule is:

 Waiting time for P1 = 0; P2 = 24; P3 = 27

 Average waiting time: (0 + 24 + 27)/3 = 17

P P P
1 2 3

0 24 3027

14 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:

 P2 , P3 , P1

 The Gantt chart for the schedule is:

 Waiting time for P1 = 6; P2 = 0; P3 = 3

 Average waiting time: (6 + 0 + 3)/3 = 3

 Much better than previous case

 Convoy effect - short process behind long process

 Consider one CPU-bound and many I/O-bound processes

P
1

0 3 6 30

P
2

P
3

15 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

5.3.2 Shortest-Job-First (SJF) Scheduling

 Associate with each process the length of its next CPU burst

 Use these lengths to schedule the process with the shortest time

 SJF is optimal – gives minimum average waiting time for a given set of

processes

 The difficulty is knowing the length of the next CPU request

 Could ask the user

16 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Example of SJF

 ProcessArrival Time Burst Time

 P1 0.0 6

 P2 2.0 8

 P3 4.0 7

 P4 5.0 3

 SJF scheduling chart

 Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

P
3

0 3 24

P
4

P
1

169

P
2

17 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Determining Length of Next CPU Burst

 Can only estimate the length – should be similar to the previous one

 Then pick process with shortest predicted next CPU burst

 Can be done by using the length of previous CPU bursts, using

exponential averaging

 Commonly, α set to ½

 Preemptive version called shortest-remaining-time-first

:Define 4.

10 , 3.

burst CPU next the for value predicted 2.

burst CPU of length actual 1.

 1n

th
n nt

 .1
1 nnn

t

18 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Prediction of the Length of the Next CPU Burst

19 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Examples of Exponential Averaging

 =0

 n+1 = n

 Recent history does not count

 =1

 n+1 = tn

 Only the actual last CPU burst counts

 If we expand the formula, we get:

n+1 = tn+(1 -) tn -1 + …

 +(1 -)j tn -j + …

 +(1 -)n +1 0

 Since both and (1 -) are less than or equal to 1, each successive
term has less weight than its predecessor

20 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Example of Shortest-remaining-time-first

 Now we add the concepts of varying arrival times and preemption to

the analysis

 ProcessAarri Arrival TimeT Burst Time

 P1 0 8

 P2 1 4

 P3 2 9

 P4 3 5

 Preemptive SJF Gantt Chart

 Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 26/4 = 6.5 msec

P
4

0 1 26

P
1

P
2

10

P
3

P
1

5 17

21 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

5.3.3 Priority Scheduling

 A priority number (integer) is associated with each process

 The CPU is allocated to the process with the highest priority (smallest

integer highest priority)

 Preemptive

 Nonpreemptive

 SJF is priority scheduling where priority is the inverse of predicted next

CPU burst time

 Problem Starvation – low priority processes may never execute

 Solution Aging – as time progresses increase the priority of the

process

22 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Example of Priority Scheduling

 ProcessA arri Burst TimeT Priority

 P1 10 3

 P2 1 1

 P3 2 4

 P4 1 5

 P5 5 2

 Priority scheduling Gantt Chart

 Average waiting time = 8.2 msec

1

0 1 19

P
1

P
2

16

P
4

P
3

6 18

P

23 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

5.3.4 Round Robin (RR)

 Each process gets a small unit of CPU time (time quantum q), usually

10-100 milliseconds. After this time has elapsed, the process is

preempted and added to the end of the ready queue.

 If there are n processes in the ready queue and the time quantum is q,

then each process gets 1/n of the CPU time in chunks of at most q time

units at once. No process waits more than (n-1)q time units.

 Timer interrupts every quantum to schedule next process

 Performance

 q large FIFO

 q small q must be large with respect to context switch, otherwise

overhead is too high

24 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Example of RR with Time Quantum = 4

 Process Burst Time

 P1 24

 P2 3

 P3 3

 The Gantt chart is:

 Typically, higher average turnaround than SJF, but better response

 q should be large compared to context switch time

 q usually 10ms to 100ms, context switch < 10 usec

P P P
1 1 1

0 18 3026144 7 10 22

P
2

P
3

P
1

P
1

P
1

25 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Time Quantum and Context Switch Time

26 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Turnaround Time Varies With The Time Quantum

80% of CPU bursts
should be shorter than q

27 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

5.3.5 Multilevel Queue

 Ready queue is partitioned into separate queues, eg:

 foreground (interactive)

 background (batch)

 Process permanently in a given queue

 Each queue has its own scheduling algorithm:

 foreground – RR

 background – FCFS

 Scheduling must be done between the queues:

 Fixed priority scheduling; (i.e., serve all from foreground then from

background). Possibility of starvation.

 Time slice – each queue gets a certain amount of CPU time which

it can schedule amongst its processes; i.e., 80% to foreground in

RR

 20% to background in FCFS

28 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Multilevel Queue Scheduling

29 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

5.3.6 Multilevel Feedback Queue

 A process can move between the various queues; aging can be

implemented this way

 Multilevel-feedback-queue scheduler defined by the following

parameters:

 number of queues

 scheduling algorithms for each queue

 method used to determine when to upgrade a process

 method used to determine when to demote a process

 method used to determine which queue a process will enter when

that process needs service

30 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Example of Multilevel Feedback Queue

 Three queues:

 Q0 – RR with time quantum 8 milliseconds

 Q1 – RR time quantum 16 milliseconds

 Q2 – FCFS

 Scheduling

 A new job enters queue Q0 which is served

FCFS

 When it gains CPU, job receives 8

milliseconds

 If it does not finish in 8 milliseconds, job is

moved to queue Q1

 At Q1 job is again served FCFS and receives

16 additional milliseconds

 If it still does not complete, it is preempted

and moved to queue Q2

31 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

5.4 THREAD SCHEDULING

32 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

5.4.1 Contention Scope

 Distinction between user-level and kernel-level threads

 When threads supported, threads scheduled, not processes

 Many-to-one and many-to-many models, thread library schedules user-

level threads to run on LWP

 Known as process-contention scope (PCS) since scheduling

competition is within the process

 Typically done via priority set by programmer

 Kernel thread scheduled onto available CPU is system-contention

scope (SCS) – competition among all threads in system

 Systems using the one-to-one model (Section 4.3.2), such as

Windows, Linux, and Solaris, schedule threads using only SCS.

33 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

5.4.2 Pthread Scheduling

 API allows specifying either PCS or SCS during thread creation

 PTHREAD_SCOPE_PROCESS schedules threads using PCS

scheduling

 PTHREAD_SCOPE_SYSTEM schedules threads using SCS

scheduling

 Can be limited by OS – Linux and Mac OS X only allow

PTHREAD_SCOPE_SYSTEM

34 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Pthread Scheduling API

#include <pthread.h>

#include <stdio.h>

#define NUM_THREADS 5

int main(int argc, char *argv[]) {

 int i, scope;

 pthread_t tid[NUM THREADS];

 pthread_attr_t attr;

 /* get the default attributes */

 pthread_attr_init(&attr);

 /* first inquire on the current scope */

 if (pthread_attr_getscope(&attr, &scope) != 0)

 fprintf(stderr, "Unable to get scheduling scope\n");

 else {

 if (scope == PTHREAD_SCOPE_PROCESS)

 printf("PTHREAD_SCOPE_PROCESS");

 else if (scope == PTHREAD_SCOPE_SYSTEM)

 printf("PTHREAD_SCOPE_SYSTEM");

 else

 fprintf(stderr, "Illegal scope value.\n");

 }

35 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Pthread Scheduling API

 /* set the scheduling algorithm to PCS or SCS */

 pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);

 /* create the threads */

 for (i = 0; i < NUM_THREADS; i++)

 pthread_create(&tid[i],&attr,runner,NULL);

 /* now join on each thread */

 for (i = 0; i < NUM_THREADS; i++)

 pthread_join(tid[i], NULL);

}

/* Each thread will begin control in this function */

void *runner(void *param)

{

 /* do some work ... */

 pthread_exit(0);

}

36 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

5.5 MULTIPLE-PROCESSOR

SCHEDULING

37 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

5.5.1 Approaches to Multiple Processor

Scheduling

 CPU scheduling more complex when multiple CPUs are available

 Homogeneous processors within a multiprocessor

 Asymmetric multiprocessing – only one processor accesses the

system data structures, alleviating the need for data sharing

 Symmetric multiprocessing (SMP) – each processor is self-

scheduling, all processes in common ready queue, or each has its own

private queue of ready processes

 Currently, most common

38 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

5.5.2 Processor Affinity

 Processor affinity – process has affinity for processor on which it is

currently running

 soft affinity

 hard affinity

 Variations including processor sets

Note that memory-placement algorithms can also consider affinity

39 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

5.5.3 Load Balancing

 If SMP, need to keep all CPUs loaded for efficiency

 Load balancing attempts to keep workload evenly distributed

 Push migration – periodic task checks load on each processor, and if

found pushes task from overloaded CPU to other CPUs

 Pull migration – idle processors pulls waiting task from busy

processor

40 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

5.5.4 Multicore Processors

 Recent trend to place multiple processor cores on same physical chip

 Faster and consumes less power

 Multiple threads per core also growing

 Takes advantage of memory stall to make progress on another

thread while memory retrieve happens

41 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Multithreaded Multicore System

