
Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edit9on

Chapter 5: CPU Scheduling

2 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Chapter 6: CPU Scheduling

1. Basic Concepts

2. Scheduling Criteria

3. Scheduling Algorithms

4. Thread Scheduling

5. Multiple-Processor Scheduling

6. Real-Time CPU Scheduling

7. Operating Systems Examples

8. Algorithm Evaluation

3 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Objectives

 To introduce CPU scheduling, which is the basis for multiprogrammed

operating systems

 To describe various CPU-scheduling algorithms

 To discuss evaluation criteria for selecting a CPU-scheduling algorithm

for a particular system

 To examine the scheduling algorithms of several operating systems

4 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

5.1 BASIC CONCEPTS

5 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

5.1.1 CPU-I/O Burst Cycle

 In a single-processor system, only one

process can run at a time. Others must

wait until the CPU is free and can be

rescheduled.

 objective of multiprogramming : to

maximize CPU utilization

 CPU–I/O Burst Cycle – Process

execution consists of a cycle of CPU

execution and I/O wait

 CPU burst followed by I/O burst

 CPU burst distribution is of main

concern

6 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Histogram of CPU-burst Times

7 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

5.1.3 Preemptive Scheduling

 Short-term scheduler selects from among the processes in ready

queue, and allocates the CPU to one of them

 Queue may be ordered in various ways

 CPU scheduling decisions may take place when a process:

1. Switches from running to waiting state

2. Switches from running to ready state

3. Switches from waiting to ready

4. Terminates

 Scheduling under 1 and 4 is nonpreemptive

 All other scheduling is preemptive

 Consider access to shared data

 Consider preemption while in kernel mode

 Consider interrupts occurring during crucial OS activities

8 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

5.1.4 Dispatcher

 Dispatcher module gives control of the CPU to the process selected by

the short-term scheduler; this involves:

 switching context

 switching to user mode

 jumping to the proper location in the user program to restart that

program

 Dispatch latency – time it takes for the dispatcher to stop one process

and start another running

9 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

5.2 SCHEDULING CRITERIA

10 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Scheduling Criteria

 CPU utilization – keep the CPU as busy as possible

 Throughput – # of processes that complete their execution per time

unit

 Turnaround time – amount of time to execute a particular process

 Waiting time – amount of time a process has been waiting in the

ready queue

 Response time – amount of time it takes from when a request was

submitted until the first response is produced, not output (for time-

sharing environment)

11 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Scheduling Algorithm Optimization Criteria

 Max CPU utilization

 Max throughput

 Min turnaround time

 Min waiting time

 Min response time

 for interactive systems (such as desktop systems), it is more important

to minimize the variance in the response time than to minimize the

average response time.

 An accurate illustration should involve many processes, each a

sequence of several hundred CPU bursts and I/O bursts.

 For simplicity, though, we consider only one CPU burst (in

milliseconds) per process in our examples.

12 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

5.3 SCHEDULING

ALGORITHMS

13 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

5.3.1 First- Come, First-Served (FCFS) Scheduling

 Process Burst Time

 P1 24

 P2 3

 P3 3

 Suppose that the processes arrive in the order: P1 , P2 , P3

The Gantt Chart for the schedule is:

 Waiting time for P1 = 0; P2 = 24; P3 = 27

 Average waiting time: (0 + 24 + 27)/3 = 17

P P P
1 2 3

0 24 3027

14 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:

 P2 , P3 , P1

 The Gantt chart for the schedule is:

 Waiting time for P1 = 6; P2 = 0; P3 = 3

 Average waiting time: (6 + 0 + 3)/3 = 3

 Much better than previous case

 Convoy effect - short process behind long process

 Consider one CPU-bound and many I/O-bound processes

P
1

0 3 6 30

P
2

P
3

15 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

5.3.2 Shortest-Job-First (SJF) Scheduling

 Associate with each process the length of its next CPU burst

 Use these lengths to schedule the process with the shortest time

 SJF is optimal – gives minimum average waiting time for a given set of

processes

 The difficulty is knowing the length of the next CPU request

 Could ask the user

16 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Example of SJF

 ProcessArrival Time Burst Time

 P1 0.0 6

 P2 2.0 8

 P3 4.0 7

 P4 5.0 3

 SJF scheduling chart

 Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

P
3

0 3 24

P
4

P
1

169

P
2

17 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Determining Length of Next CPU Burst

 Can only estimate the length – should be similar to the previous one

 Then pick process with shortest predicted next CPU burst

 Can be done by using the length of previous CPU bursts, using

exponential averaging

 Commonly, α set to ½

 Preemptive version called shortest-remaining-time-first

:Define 4.

10 , 3.

burst CPU next the for value predicted 2.

burst CPU of length actual 1.











 1n

th
n nt

  .1
1 nnn

t  


18 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Prediction of the Length of the Next CPU Burst

19 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Examples of Exponential Averaging

  =0

 n+1 = n

 Recent history does not count

  =1

 n+1 =  tn

 Only the actual last CPU burst counts

 If we expand the formula, we get:

n+1 =  tn+(1 - ) tn -1 + …

 +(1 - )j  tn -j + …

 +(1 - )n +1 0

 Since both  and (1 - ) are less than or equal to 1, each successive
term has less weight than its predecessor

20 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Example of Shortest-remaining-time-first

 Now we add the concepts of varying arrival times and preemption to

the analysis

 ProcessAarri Arrival TimeT Burst Time

 P1 0 8

 P2 1 4

 P3 2 9

 P4 3 5

 Preemptive SJF Gantt Chart

 Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 26/4 = 6.5 msec

P
4

0 1 26

P
1

P
2

10

P
3

P
1

5 17

21 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

5.3.3 Priority Scheduling

 A priority number (integer) is associated with each process

 The CPU is allocated to the process with the highest priority (smallest

integer  highest priority)

 Preemptive

 Nonpreemptive

 SJF is priority scheduling where priority is the inverse of predicted next

CPU burst time

 Problem  Starvation – low priority processes may never execute

 Solution  Aging – as time progresses increase the priority of the

process

22 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Example of Priority Scheduling

 ProcessA arri Burst TimeT Priority

 P1 10 3

 P2 1 1

 P3 2 4

 P4 1 5

 P5 5 2

 Priority scheduling Gantt Chart

 Average waiting time = 8.2 msec

1

0 1 19

P
1

P
2

16

P
4

P
3

6 18

P

23 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

5.3.4 Round Robin (RR)

 Each process gets a small unit of CPU time (time quantum q), usually

10-100 milliseconds. After this time has elapsed, the process is

preempted and added to the end of the ready queue.

 If there are n processes in the ready queue and the time quantum is q,

then each process gets 1/n of the CPU time in chunks of at most q time

units at once. No process waits more than (n-1)q time units.

 Timer interrupts every quantum to schedule next process

 Performance

 q large  FIFO

 q small  q must be large with respect to context switch, otherwise

overhead is too high

24 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Example of RR with Time Quantum = 4

 Process Burst Time

 P1 24

 P2 3

 P3 3

 The Gantt chart is:

 Typically, higher average turnaround than SJF, but better response

 q should be large compared to context switch time

 q usually 10ms to 100ms, context switch < 10 usec

P P P
1 1 1

0 18 3026144 7 10 22

P
2

P
3

P
1

P
1

P
1

25 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Time Quantum and Context Switch Time

26 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Turnaround Time Varies With The Time Quantum

80% of CPU bursts
should be shorter than q

27 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

5.3.5 Multilevel Queue

 Ready queue is partitioned into separate queues, eg:

 foreground (interactive)

 background (batch)

 Process permanently in a given queue

 Each queue has its own scheduling algorithm:

 foreground – RR

 background – FCFS

 Scheduling must be done between the queues:

 Fixed priority scheduling; (i.e., serve all from foreground then from

background). Possibility of starvation.

 Time slice – each queue gets a certain amount of CPU time which

it can schedule amongst its processes; i.e., 80% to foreground in

RR

 20% to background in FCFS

28 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Multilevel Queue Scheduling

29 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

5.3.6 Multilevel Feedback Queue

 A process can move between the various queues; aging can be

implemented this way

 Multilevel-feedback-queue scheduler defined by the following

parameters:

 number of queues

 scheduling algorithms for each queue

 method used to determine when to upgrade a process

 method used to determine when to demote a process

 method used to determine which queue a process will enter when

that process needs service

30 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Example of Multilevel Feedback Queue

 Three queues:

 Q0 – RR with time quantum 8 milliseconds

 Q1 – RR time quantum 16 milliseconds

 Q2 – FCFS

 Scheduling

 A new job enters queue Q0 which is served

FCFS

 When it gains CPU, job receives 8

milliseconds

 If it does not finish in 8 milliseconds, job is

moved to queue Q1

 At Q1 job is again served FCFS and receives

16 additional milliseconds

 If it still does not complete, it is preempted

and moved to queue Q2

31 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

5.4 THREAD SCHEDULING

32 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

5.4.1 Contention Scope

 Distinction between user-level and kernel-level threads

 When threads supported, threads scheduled, not processes

 Many-to-one and many-to-many models, thread library schedules user-

level threads to run on LWP

 Known as process-contention scope (PCS) since scheduling

competition is within the process

 Typically done via priority set by programmer

 Kernel thread scheduled onto available CPU is system-contention

scope (SCS) – competition among all threads in system

 Systems using the one-to-one model (Section 4.3.2), such as

Windows, Linux, and Solaris, schedule threads using only SCS.

33 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

5.4.2 Pthread Scheduling

 API allows specifying either PCS or SCS during thread creation

 PTHREAD_SCOPE_PROCESS schedules threads using PCS

scheduling

 PTHREAD_SCOPE_SYSTEM schedules threads using SCS

scheduling

 Can be limited by OS – Linux and Mac OS X only allow

PTHREAD_SCOPE_SYSTEM

34 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Pthread Scheduling API

#include <pthread.h>

#include <stdio.h>

#define NUM_THREADS 5

int main(int argc, char *argv[]) {

 int i, scope;

 pthread_t tid[NUM THREADS];

 pthread_attr_t attr;

 /* get the default attributes */

 pthread_attr_init(&attr);

 /* first inquire on the current scope */

 if (pthread_attr_getscope(&attr, &scope) != 0)

 fprintf(stderr, "Unable to get scheduling scope\n");

 else {

 if (scope == PTHREAD_SCOPE_PROCESS)

 printf("PTHREAD_SCOPE_PROCESS");

 else if (scope == PTHREAD_SCOPE_SYSTEM)

 printf("PTHREAD_SCOPE_SYSTEM");

 else

 fprintf(stderr, "Illegal scope value.\n");

 }

35 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Pthread Scheduling API

 /* set the scheduling algorithm to PCS or SCS */

 pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);

 /* create the threads */

 for (i = 0; i < NUM_THREADS; i++)

 pthread_create(&tid[i],&attr,runner,NULL);

 /* now join on each thread */

 for (i = 0; i < NUM_THREADS; i++)

 pthread_join(tid[i], NULL);

}

/* Each thread will begin control in this function */

void *runner(void *param)

{

 /* do some work ... */

 pthread_exit(0);

}

36 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

5.5 MULTIPLE-PROCESSOR

SCHEDULING

37 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

5.5.1 Approaches to Multiple Processor

Scheduling

 CPU scheduling more complex when multiple CPUs are available

 Homogeneous processors within a multiprocessor

 Asymmetric multiprocessing – only one processor accesses the

system data structures, alleviating the need for data sharing

 Symmetric multiprocessing (SMP) – each processor is self-

scheduling, all processes in common ready queue, or each has its own

private queue of ready processes

 Currently, most common

38 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

5.5.2 Processor Affinity

 Processor affinity – process has affinity for processor on which it is

currently running

 soft affinity

 hard affinity

 Variations including processor sets

Note that memory-placement algorithms can also consider affinity

39 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

5.5.3 Load Balancing

 If SMP, need to keep all CPUs loaded for efficiency

 Load balancing attempts to keep workload evenly distributed

 Push migration – periodic task checks load on each processor, and if

found pushes task from overloaded CPU to other CPUs

 Pull migration – idle processors pulls waiting task from busy

processor

40 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

5.5.4 Multicore Processors

 Recent trend to place multiple processor cores on same physical chip

 Faster and consumes less power

 Multiple threads per core also growing

 Takes advantage of memory stall to make progress on another

thread while memory retrieve happens

41 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Multithreaded Multicore System

