
Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edit9on

Chapter 2: Operating-System

Structures

2 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Chapter 2: Operating-System Structures

1. Operating System Services

2. User Operating System Interface

3. System Calls

4. Types of System Calls

5. System Programs

6. Operating System Design and Implementation

7. Operating System Structure

8. Operating System Debugging

9. Operating System Generation

10. System Boot

3 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

2.6 OPERATING-SYSTEM DESIGN

AND IMPLEMENTATION

4 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

2.6.1 Design Goals

 Design and Implementation of OS not “solvable”, but some approaches
have proven successful

 Internal structure of different Operating Systems can vary widely

 Start the design by defining goals and specifications

 Affected by choice of hardware, type of system

 User goals and System goals

 User goals – operating system should be convenient to use, easy
to learn, reliable, safe, and fast

 no general agreement on how to achieve them.

 System goals – operating system should be easy to design,
implement, and maintain, as well as flexible, reliable, error-free,
and efficient

 vague and may be interpreted in various ways

 no unique solution

 Specifying and designing an OS is highly creative task of software
engineering

5 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

2.6.2 Mechanisms and Policies

 Important principle to separate

 Policy: What will be done?

Mechanism: How to do it?

 Mechanisms determine how to do something, policies decide what will

be done

 The separation of policy from mechanism is a very important principle,

it allows maximum flexibility if policy decisions are to be changed later

(example – timer)

 Microkernel-based operating systems (Section 2.7.3) take the

separation of mechanism and policy to one extreme by implementing a

basic set of primitive building blocks.

 almost policy free

 UNIX

 At first, a time-sharing scheduler

 Solaris - scheduling is controlled by loadable tables.

 Policy decisions are important

6 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

2.6.3 Implementation

 Much variation

 Early OSes in assembly language

 Then system programming languages like Algol, PL/1

 Now C, C++

 Actually usually a mix of languages

 Lowest levels in assembly

 Main body in C

 Systems programs in C, C++, scripting languages like PERL, Python,
shell scripts

 More high-level language easier to port to other hardware (MS-DOS vs.
LINUX)

 disadvantages

 reduced speed and increased storage requirements

 Emulation can allow an OS to run on non-native hardware

 modern compiler can perform complex analysis and apply sophisticated
optimizations that produce excellent code

 major performance improvements are more likely to be the result of better
data structures and algorithms than of excellent assembly-language code

7 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

2.7 OPERATING-SYSTEM

STRUCTURE

8 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Operating System Structure

 General-purpose OS is very large program

 A system as large and complex must be engineered carefully if it is to

function properly and be modified easily.

 A common approach is to partition the task into small components,

or modules, rather than have one monolithic system

 Various ways to structure ones

 Simple structure – MS-DOS

 More complex -- UNIX

 Layered – an abstrcation

 Microkernel -Mach

9 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

2.7.1 Simple Structure

 MS-DOS – written to provide the most functionality in the least space

 Not divided into modules

 Although MS-DOS has some structure, its interfaces and levels of

functionality are not well separated

10 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Simple Structure - the original UNIX

 UNIX – limited by hardware functionality, the original UNIX operating

system had limited structuring.

 The UNIX OS consists of two separable parts

 Systems programs

 The kernel

 Consists of everything below the system-call interface and

above the physical hardware

 Provides the file system, CPU scheduling, memory

management, and other operating-system functions; a large

number of functions for one level

11 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Traditional UNIX System Structure

Beyond simple but not fully layered

12 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

2.7.2 Layered Approach

 The operating system is divided into a number of layers (levels), each

built on top of lower layers. The bottom layer (layer 0), is the hardware;

the highest (layer N) is the user interface.

 With modularity, layers are selected such that each uses functions

(operations) and services of only lower-level layers

 Main advantage

 simplicity of construction and debugging

 Major difficulty

 appropriately defining the various layers

 Problem

 be less efficient than other types

 passing parameters

 a small backlash

 fewer layers with more functionality

13 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

2.7.3 Microkernels

 Moves as much from the kernel into user space

 Mach example of microkernel

 Mac OS X kernel (Darwin) partly based on Mach

 Communication takes place between user modules using message

passing

 Benefits:

 Easier to extend a microkernel

 Easier to port the operating system to new architectures

 More reliable (less code is running in kernel mode)

 More secure

 Detriments:

 Performance overhead of user space to kernel space

communication

14 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Microkernel System Structure

Application

Program

File

System

Device

Driver

Interprocess

Communication

memory

managment

CPU

scheduling

messagesmessages

microkernel

hardware

user

mode

kernel

mode

15 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

2.7.4 Modules

 Many modern operating systems implement loadable kernel

modules

 Uses object-oriented approach

 Each core component is separate

 Each talks to the others over known interfaces

 Each is loadable as needed within the kernel

 Overall, similar to layers but with more flexible

 because any module can call any other module

 similar to the microkernel approach but more efficient

 because modules do not need to invoke message passing

to communicate

 Linux, Solaris, etc

16 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Solaris Modular Approach

17 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

2.7.5 Hybrid Systems

 Most modern operating systems are actually not one pure model

 Hybrid combines multiple approaches to address performance,

security, usability needs

 Linux and Solaris kernels in kernel address space, so monolithic,

plus modular for dynamic loading of functionality

 Windows mostly monolithic, plus microkernel for different

subsystem personalities

18 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

2.7.5.1 Mac OS X

 Apple Mac OS X hybrid, layered, Aqua UI plus Cocoa programming

environment

 Below is kernel consisting of Mach microkernel and BSD Unix

parts, plus I/O kit and dynamically loadable modules (called kernel

extensions)

graphical user interface
Aqua

application environments and services

kernel environment

Java Cocoa Quicktime BSD

Mach

I/O kit kernel extensions

BSD

19 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

2.7.5.2 iOS

 Apple mobile OS for iPhone, iPad

 Structured on Mac OS X, added functionality

 Does not run OS X applications natively

 Also runs on different CPU architecture (ARM vs. Intel)

 Cocoa Touch Objective-C API for developing apps

 Media services layer for graphics, audio, video

 Core services provides cloud computing, databases

 Core operating system, based on Mac OS X kernel

20 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

2.7.5.3 Android

 Developed by Open Handset Alliance (mostly Google)

 Open Source

 Similar stack to IOS

 Based on Linux kernel but modified

 Provides process, memory, device-driver management

 Adds power management

 Runtime environment includes core set of libraries and Dalvik virtual

machine

 Apps developed in Java plus Android API

 Java class files compiled to Java bytecode then translated to

executable than runs in Dalvik VM

 Libraries include frameworks for web browser (webkit), database

(SQLite), multimedia, smaller libc

21 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Android Architecture

Applications

Application Framework

Android runtime

Core Libraries

Dalvik

virtual machine

Libraries

Linux kernel

SQLite openGL

surface

manager

webkit libc

media

framework

22 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

2.8 OPERATING-SYSTEM

DEBUGGING

23 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

2.8.1 Failure Analysis

 Debugging is finding and fixing errors, or bugs

 OS generate log files containing error information

 Failure of an application can generate core dump file capturing

memory of the process

 Operating-system kernel debugging is even more complex

 because of the size and complexity of the kernel, its control of the

hardware, and the lack of user-level debugging tools.

 Operating system failure can generate crash dump file containing

kernel memory

 Kernighan’s Law: “Debugging is twice as hard as writing the code in th

e first place. Therefore, if you write the code as cleverly as possible, yo

u are, by definition, not smart enough to debug it.”

24 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

2.8.2 Performance Tuning

 Beyond crashes,
performance tuning can
optimize system performance

 Sometimes using trace
listings of activities,
recorded for analysis

 Profiling is periodic
sampling of instruction
pointer to look for
statistical trends

 Improve performance by
removing bottlenecks

 OS must provide means of
computing and displaying
measures of system behavior

 For example, “top” program
or Windows Task Manager

25 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

2.8.3 DTrace

 DTrace tool in Solaris,

FreeBSD, Mac OS X allows

live instrumentation on

production systems

 Probes fire when code is

executed within a provider,

capturing state data and

sending it to consumers of

those probes

 Example of following

XEventsQueued system call

move from libc library to

kernel and back

26 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Dtrace (Cont.)

 DTrace code to record

amount of time each

process with UserID 101 is

in running mode (on CPU)

in nanoseconds

27 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

2.9 OPERATING-SYSTEM

GENERATION

28 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Operating System Generation

 Operating systems are designed to run on any of a class of machines;

the system must be configured for each specific computer site

 SYSGEN program obtains information concerning the specific

configuration of the hardware system

 Used to build system-specific compiled kernel or system-tuned

 Can general more efficient code than one general kernel

29 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

2.10 SYSTEM BOOT

30 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

System Boot

 When power initialized on system, execution starts at a fixed memory

location

 Firmware ROM used to hold initial boot code

 Operating system must be made available to hardware so hardware

can start it

 Small piece of code – bootstrap loader, stored in ROM or

EEPROM locates the kernel, loads it into memory, and starts it

 Sometimes two-step process where boot block at fixed location

loaded by ROM code, which loads bootstrap loader from disk

 Common bootstrap loader, GRUB, allows selection of kernel from

multiple disks, versions, kernel options

 Kernel loads and system is then running

Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edit9on

End of Chapter 2

