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Objectives 

 To explore the history of the UNIX operating system from 

which Linux is derived and the principles upon which Linux’s 

design is based 

 To examine the Linux process model and illustrate how Linux 

schedules processes and provides interprocess 

communication 

 To look at memory management in Linux 

 To explore how Linux implements file systems and manages 

I/O devices  
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History 

 Linux is a modern, free operating system based on UNIX 
standards 

 First developed as a small but self-contained kernel in 1991 
by Linus Torvalds, with the major design goal of UNIX 
compatibility, released as open source 

 Its history has been one of collaboration by many users from 
all around the world, corresponding almost exclusively over 
the Internet 

 It has been designed to run efficiently and reliably on 
common PC hardware, but also runs on a variety of other 
platforms 

 The core Linux operating system kernel is entirely original, 
but it can run much existing free UNIX software, resulting in 
an entire UNIX-compatible operating system free from 
proprietary code 

 Linux system has many, varying Linux distributions 
including the kernel, applications, and management tools 



18.5 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition 

The Linux Kernel 

 Version 0.01 (May 1991) had no networking, ran only on 80386-
compatible Intel processors and on PC hardware, had extremely 
limited device-drive support, and supported only the Minix file 
system 

 Linux 1.0 (March 1994) included these new features: 

 Support for UNIX’s standard TCP/IP networking protocols 

 BSD-compatible socket interface for networking programming 

 Device-driver support for running IP over an Ethernet 

 Enhanced file system 

 Support for a range of SCSI controllers for  
high-performance disk access 

 Extra hardware support 

 Version 1.2 (March 1995) was the final PC-only Linux kernel 

  Kernels with odd version numbers are development kernels, 
those with even numbers are production kernels 
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Linux 2.0 

 Released in June 1996,  2.0 added two major new capabilities: 

 Support for multiple architectures, including a fully 64-bit native Alpha 
port 

 Support for multiprocessor architectures 

 Other new features included: 

 Improved memory-management code 

 Improved TCP/IP performance 

 Support for internal kernel threads, for handling dependencies between 
loadable modules, and for automatic loading of modules on demand 

 Standardized configuration interface 

 Available for Motorola 68000-series processors, Sun Sparc 
systems, and for PC and PowerMac systems 

 2.4 and 2.6 increased SMP support, added journaling file system, 
preemptive kernel, 64-bit memory support 

 3.0 released in 2011, 20th anniversary of Linux, improved 
virtualization support, new page write-back facility, improved 
memory management, new Completely Fair Scheduler 
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The Linux System 

 Linux uses many tools developed as part of Berkeley’s BSD 

operating system, MIT’s X  Window System, and the Free 

Software Foundation's GNU project 

 The main system libraries were started by the GNU project, with 

improvements provided by the Linux community 

 Linux networking-administration tools were derived from 4.3BSD 

code; recent BSD derivatives such as Free BSD have borrowed 

code from Linux in return 

 The Linux system is maintained by a loose network of developers 

collaborating over the Internet, with a small number of public ftp 

sites acting as de facto standard repositories 

 File System Hierarchy Standard document maintained by the 

Linux community to ensure compatibility across the various 

system components 

 Specifies overall layout of a standard Linux file system, determines 

under which directory names configuration files, libraries, system 

binaries, and run-time data files should be stored  
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Linux Distributions 

 Standard, precompiled sets of packages, or distributions, 

include the basic Linux system, system installation and 

management utilities, and ready-to-install packages of common 

UNIX tools 

 The first distributions managed these packages by simply 

providing a means of unpacking all the files into the appropriate 

places; modern distributions include advanced package 

management 

 Early distributions included SLS and Slackware  

 Red Hat and Debian are popular distributions from 

commercial and noncommercial sources, respectively, 

others include Canonical and SuSE 

 The RPM Package file format permits compatibility among the 

various Linux distributions 
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Linux Licensing 

 The Linux kernel is distributed under the GNU General Public 

License (GPL), the terms of which are set out by the Free 

Software Foundation 

 Not public domain, in that not all rights are waived 

 Anyone using Linux, or creating their own derivative of Linux, 

may not make the derived product proprietary; software 

released under the GPL may not be redistributed as a binary-

only product 

 Can sell distributions, but must offer the source code too 
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Design Principles 

 Linux is a multiuser, multitasking system with a full set of 

UNIX-compatible tools 

 Its file system adheres to traditional UNIX semantics, and it 

fully implements the standard UNIX networking model 

 Main design goals are speed, efficiency, and standardization 

 Linux is designed to be compliant with the relevant POSIX 

documents; at least two Linux distributions have achieved 

official POSIX certification 

 Supports Pthreads and a subset of POSIX real-time 

process control 

 The Linux programming interface adheres to the SVR4 UNIX 

semantics, rather than to BSD behavior 
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Components of a Linux System 
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Components of a Linux System 

 Like most UNIX implementations, Linux is composed of three 

main bodies of code; the most important distinction between 

the kernel and all other components. 

 The kernel is responsible for maintaining the important 

abstractions of the operating system 

 Kernel code executes in kernel mode with full access to all 

the physical resources of the computer 

 All kernel code and data structures are kept in the same 

single address space 
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Components of a Linux System (Cont.) 

 The system libraries define a standard set of functions 

through which applications interact with the kernel, and which 

implement much of the operating-system functionality that 

does not need the full privileges of kernel code 

 The system utilities perform individual specialized 

management tasks 

 User-mode programs rich and varied, including multiple 

shells like the bourne-again (bash) 
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Kernel Modules 

 Sections of kernel code that can be compiled, loaded, and 

unloaded independent of the rest of the kernel. 

 A kernel module may typically implement a device driver, a file 

system, or a networking protocol 

 The module interface allows third parties to write and distribute, on 

their own terms, device drivers or file systems that could not be 

distributed under the GPL. 

 Kernel modules allow a Linux system to be set up with a standard, 

minimal kernel, without any extra device drivers built in. 

 Four components to Linux module support: 

 module-management system 

 module loader and unloader 

 driver-registration system 

 conflict-resolution mechanism 
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Module Management 

 Supports loading modules into memory and letting them talk 

to the rest of the kernel 

 Module loading is split into two separate sections: 

 Managing sections of module code in kernel memory 

 Handling symbols that modules are allowed to reference 

 The module requestor manages loading requested, but 

currently unloaded, modules; it also regularly queries the 

kernel to see whether a dynamically loaded module is still in 

use, and will unload it when it is no longer actively needed 
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Driver Registration 

 Allows modules to tell the rest of the kernel that a new driver 

has become available 

 The kernel maintains dynamic tables of all known drivers, and 

provides a set of routines to allow drivers to be added to or 

removed from these tables at any time 

 Registration tables include the following items:   

 Device drivers 

 File systems  

 Network protocols 

 Binary format 
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Conflict Resolution 

 A mechanism that allows different device drivers to reserve 

hardware resources and to protect those resources from 

accidental use by another driver. 

 The conflict resolution module aims to: 

 Prevent modules from clashing over access to hardware 

resources 

 Prevent autoprobes from interfering with existing device 

drivers 

 Resolve conflicts with multiple drivers trying to access the 

same hardware: 

1. Kernel maintains list of allocated HW resources 
 

2. Driver reserves resources with kernel database first 
 

3. Reservation request rejected if resource not available 
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Process Management 

 UNIX process management separates the creation of 

processes and the running of a new program into two distinct 

operations. 

 The fork() system call creates a new process 

 A new program is run after a call to exec() 

 Under UNIX, a process encompasses all the information that 

the operating system must maintain to track the context of a 

single execution of a single program 

 Under Linux, process properties fall into three groups:  the 

process’s identity, environment, and context 
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Process Identity 

 Process ID (PID) - The unique identifier for the process; used to 
specify processes to the operating system when an application 
makes a system call to signal, modify, or wait for another process 

 Credentials -  Each process must have an associated user ID 
and one or more group IDs that determine the process’s rights to 
access system resources and files 

 Personality -  Not traditionally found on UNIX systems, but under 
Linux each process has an associated personality identifier that 
can slightly modify the semantics of certain system calls 

 Used primarily by emulation libraries to request that system 
calls be compatible with certain specific flavors of UNIX 

 Namespace – Specific view of file system hierarchy 

 Most processes share common namespace and operate on a 
shared file-system hierarchy 

 But each can have unique file-system hierarchy with its own 
root directory and set of mounted file systems 
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Process Environment 

 The process’s environment is inherited from its parent, and is 

composed of two null-terminated vectors: 

 The argument vector lists the command-line arguments 

used to invoke the running program; conventionally starts 

with the name of the program itself. 

 The environment vector is a list of “NAME=VALUE” pairs 

that associates named environment variables with arbitrary 

textual values. 

 Passing environment variables among processes and inheriting 

variables by a process’s children are flexible means of passing 

information to components of the user-mode system software. 

 The environment-variable mechanism provides a customization 

of the operating system that can be set on a per-process basis, 

rather than being configured for the system as a whole. 
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Process Context 

 The (constantly changing) state of a running program at any 

point in time 

 The scheduling context is the most important part of the 

process context; it is the information that the scheduler needs to 

suspend and restart the process 

 The kernel maintains accounting information about the 

resources currently being consumed by each process, and the 

total resources consumed by the process in its lifetime so far 

 The file table is an array of pointers to kernel file structures 

 When making file I/O system calls, processes refer to files by 

their index into this table, the file descriptor (fd) 
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Process Context (Cont.) 

 Whereas the file table lists the existing open files, the  

file-system context applies to requests to open new files 

 The current root and default directories to be used for new 

file searches are stored here 

 The signal-handler table defines the routine in the process’s 

address space to be called when specific signals arrive 

 The virtual-memory context of a process describes the full 

contents of the its private address space 
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Processes and Threads 

 Linux uses the same internal representation for processes and threads; a 

thread is simply a new process that happens to share the same address 

space as its parent 

 Both are called tasks by Linux 

 A distinction is only made when a new thread is created by the clone() 

system call 

 fork() creates a new task with its own entirely new task context 

 clone() creates a new task with its own identity, but that is allowed 

to share the data structures of its parent 

 Using clone() gives an application fine-grained control over exactly what 

is shared between two threads 
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Scheduling 

 The job of allocating CPU time to different tasks within an 

operating system 

 While scheduling is normally thought of as the running and 

interrupting of processes, in Linux, scheduling also includes the 

running of the various kernel tasks 

 Running kernel tasks encompasses both tasks that are 

requested by a running process and tasks that execute internally 

on behalf of a device driver 

 As of 2.5, new scheduling algorithm – preemptive, priority-based, 

known as O(1) 

 Real-time range 

 nice value 

 Had challenges with interactive performance 

 2.6 introduced Completely Fair Scheduler (CFS) 
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CFS 

 Eliminates traditional, common idea of time slice 

 Instead all tasks allocated portion of processor’s time 

 CFS calculates how long a process should run as a function 

of total number of tasks 

 N runnable tasks means each gets 1/N of processor’s time 

 Then weights each task with its nice value 

 Smaller nice value -> higher weight (higher priority) 
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CFS (Cont.) 

 Then each task run with for time proportional to task’s weight 

divided by total weight  of all runnable tasks 

 Configurable variable target latency is desired interval during 

which each task should run at least once 

 Consider simple case of 2 runnable tasks with equal weight 

and target latency of 10ms – each then runs for 5ms 

 If 10 runnable tasks, each runs for 1ms 

 Minimum granularity ensures each run has reasonable 

amount of time (which actually violates fairness idea) 
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Kernel Synchronization 

 A request for kernel-mode execution can occur in two ways: 

 A running program may request an operating system 

service, either explicitly via a system call, or implicitly, for 

example, when a page fault occurs 

 A device driver may deliver a hardware interrupt that 

causes the CPU to start executing a kernel-defined 

handler for that interrupt 

 Kernel synchronization requires a framework that will allow 

the kernel’s critical sections to run without interruption by 

another critical section 
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Kernel Synchronization (Cont.) 

 Linux uses two techniques to protect critical sections: 

1. Normal kernel code is nonpreemptible (until 2.6) 

–  when a time interrupt is received while a process is 

    executing a kernel system service routine, the kernel’s  

    need_resched flag is set so that the scheduler will run  

    once the system call has completed and control is 

    about to be returned to user mode 

2. The second technique applies to critical sections that occur in an 

interrupt service routines 

 –  By using the processor’s interrupt control hardware to disable 

interrupts during a critical section, the kernel guarantees that it can 

proceed without the risk of concurrent access of shared data structures 

 Provides spin locks, semaphores, and reader-writer versions of both 

 Behavior modified if on single processor or multi: 
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Kernel Synchronization (Cont.) 

 To avoid performance penalties, Linux’s kernel uses a 

synchronization architecture that allows long critical sections to 

run without having interrupts disabled for the critical section’s 

entire duration 

 Interrupt service routines are separated into a top half and a 

bottom half 

 The top half is a normal interrupt service routine, and runs 

with recursive interrupts disabled 

 The bottom half is run, with all interrupts enabled, by a 

miniature scheduler that ensures that bottom halves never 

interrupt themselves 

 This architecture is completed by a mechanism for disabling 

selected bottom halves while executing normal, foreground 

kernel code 
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Interrupt Protection Levels 

 Each level may be interrupted by code running at a higher 
level, but will never be interrupted by code running at the 
same or a lower level 

 User processes can always be preempted by another 
process when a time-sharing scheduling interrupt occurs 
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Symmetric Multiprocessing 

 Linux 2.0 was the first Linux kernel to support SMP hardware; 

separate processes or threads can execute in parallel on 

separate processors 

 Until version 2.2, to preserve the kernel’s nonpreemptible 

synchronization requirements, SMP imposes the restriction, via a 

single kernel spinlock, that only one processor at a time may 

execute kernel-mode code 

 Later releases implement more scalability by splitting single 

spinlock into multiple locks, each protecting a small subset of 

kernel data structures 

 Version 3.0 adds even more fine-grained locking, processor 

affinity, and load-balancing 
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Memory Management 

 Linux’s physical memory-management system deals with 

allocating and freeing pages, groups of pages, and small blocks 

of memory 

 It has additional mechanisms for handling virtual memory, 

memory mapped into the address space of running processes 

 Splits memory into four different zones due to hardware 

characteristics 

 Architecture specific, for example on x86: 
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Managing Physical Memory 

 The page allocator allocates and frees all physical pages; it 
can allocate ranges of physically-contiguous pages on 
request 

 The allocator uses a buddy-heap algorithm to keep track of 
available physical pages 

 Each allocatable memory region is paired with an 
adjacent partner 

 Whenever two allocated partner regions are both freed 
up they are combined to form a larger region 

 If a small memory request cannot be satisfied by 
allocating an existing small free region, then a larger free 
region will be subdivided into two partners to satisfy the 
request 
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Managing Physical Memory (Cont.) 

 Memory allocations in the Linux kernel occur either statically 
(drivers reserve a contiguous area of memory during system 
boot time) or dynamically (via the page allocator) 

 Also uses slab allocator for kernel memory 

 Page cache and virtual memory system also manage 
physical memory 

 Page cache is kernel’s main cache for files and main 
mechanism for I/O to block devices 

 Page cache stores entire pages of file contents for local 
and network file I/O 
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Splitting of Memory in a Buddy Heap 
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Slab Allocator in Linux 
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Virtual Memory 

 The VM system maintains the address space visible to each 

process:  It creates pages of virtual memory on demand, and 

manages the loading of those pages from disk or their swapping 

back out to disk as required. 

 The VM manager maintains two separate views of a process’s 

address space: 

 A logical view describing instructions concerning the layout of 

the address space 

 The address space consists of a set of non-overlapping 

regions, each representing a continuous, page-aligned 

subset of the address space 

 A physical view of each address space which is stored in the 

hardware page tables for the process 
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Virtual Memory (Cont.) 

 Virtual memory regions are characterized by: 

 The backing store, which describes from where the pages for 

a region come; regions are usually backed by a file or by 

nothing (demand-zero memory) 

 The region’s reaction to writes (page sharing or copy-on-

write 

 The kernel creates a new virtual address space 

1. When a process runs a new program with the exec() 

system call 

2.  Upon creation of a new process by the fork() system call 
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Virtual Memory (Cont.) 

 On executing a new program, the process is given a new, 

completely empty virtual-address space; the program-loading 

routines populate the address space with virtual-memory regions 

 Creating a new process with fork() involves creating a 

complete copy of the existing process’s virtual address space 

 The kernel copies the parent process’s VMA descriptors, 

then creates a new set of page tables for the child 

 The parent’s page tables are copied directly into the child’s, 

with the reference count of each page covered being 

incremented 

 After the fork, the parent and child share the same physical 

pages of memory in their address spaces 
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Swapping and Paging 

 The VM paging system relocates pages of memory from 

physical memory out to disk when the memory is needed for 

something else 

 The VM paging system can be divided into two sections: 

 The pageout-policy algorithm decides which pages to 

write out to disk, and when 

 The paging mechanism actually carries out the transfer, 

and pages data back into physical memory as needed 

 Can page out to either swap device or normal files 

 Bitmap used to track used blocks in swap space kept in 

physical memory 

 Allocator uses next-fit algorithm to try to write contiguous 

runs 
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Kernel Virtual Memory 

 The Linux kernel reserves a constant, architecture-dependent 

region of the virtual address space of every process for its own 

internal use 

 This kernel virtual-memory area contains two regions: 

 A static area that contains page table references to every 

available physical page of memory in the system, so that 

there is a simple translation from physical to virtual 

addresses when running kernel code 

 The reminder of the reserved section is not reserved for 

any specific purpose; its page-table entries can be modified 

to point to any other areas of memory 
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Executing and Loading User Programs 

 Linux maintains a table of functions for loading programs; it gives 

each function the opportunity to try loading the given file when an 

exec system call is made 

 The registration of multiple loader routines allows Linux to support 

both the ELF and a.out binary formats 

 Initially, binary-file pages are mapped into virtual memory 

 Only when a program tries to access a given page will a page 

fault result in that page being loaded into physical memory 

 An ELF-format binary file consists of a header followed by several 

page-aligned sections 

 The ELF loader works by reading the header and mapping the 

sections of the file into separate regions of virtual memory 
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Memory Layout for ELF Programs 
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Static and Dynamic Linking 

 A program whose necessary library functions are embedded 

directly in the program’s executable binary file is statically 

linked to its libraries 

 The main disadvantage of static linkage is that every program 

generated must contain copies of exactly the same common 

system library functions 

 Dynamic linking is more efficient in terms of both physical 

memory and disk-space usage because it loads the system 

libraries into memory only once 
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Static and Dynamic Linking (Cont.) 

 Linux implements dynamic linking in user mode through special 

linker library 

 Every dynamically linked program contains small statically 

linked function called when process starts 

 Maps the link library into memory  

 Link library determines dynamic libraries required by process 

and names of variables and functions needed 

 Maps libraries into middle of virtual memory and resolves 

references to symbols contained in the libraries 

 Shared libraries compiled to be position-independent code 

(PIC) so can be loaded anywhere 
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File Systems 

 To the user, Linux’s file system appears as a hierarchical directory tree 

obeying UNIX semantics 

 Internally, the kernel hides implementation details and manages the 

multiple different file systems via an abstraction layer, that is, the virtual 

file system (VFS) 

 The Linux VFS is designed around object-oriented principles and is 

composed of four components: 

 A set of definitions that define what a file object is allowed to look like 

 The inode object structure represent an individual file 

 The file object represents an open file 

 The superblock object represents an entire file system 

 A dentry object represents an individual directory entry 
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File Systems (Cont.) 

 To the user, Linux’s file system appears as a hierarchical 

directory tree obeying UNIX semantics 

 Internally, the kernel hides implementation details and manages 

the multiple different file systems via an abstraction layer, that is, 

the virtual file system (VFS) 

 The Linux VFS is designed around object-oriented principles and  

layer of software to manipulate those objects with a set of 

operations on the objects 

 For example for the file object operations include (from struct 

file_operations in /usr/include/linux/fs.h  

        int open(. . .) — Open a file 

        ssize t read(. . .) — Read from a file 

        ssize t write(. . .) — Write to a file 

        int mmap(. . .) — Memory-map a file 
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The Linux ext3 File System 

 ext3 is standard on disk file system for Linux 

 Uses a mechanism similar to that of BSD Fast File 

System (FFS) for locating data blocks belonging to a 

specific file 

 Supersedes older extfs, ext2 file systems 

 Work underway on ext4 adding features like extents 

 Of course, many other file system choices with Linux 

distros 
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The Linux ext3 File System (Cont.) 

 The main differences between ext2fs and FFS concern their disk 

allocation policies 

 In ffs, the disk is allocated to files in blocks of 8Kb, with blocks being 

subdivided into fragments of 1Kb to store small files or partially filled 

blocks at the end of a file 

 ext3 does not use fragments; it performs its allocations in smaller 

units   

 The default block size on ext3 varies as a function of total size of 

file system with support for 1, 2, 4 and 8 KB blocks  

 ext3 uses cluster allocation policies designed to place logically 

adjacent blocks of a file into physically adjacent blocks on disk, so 

that it can submit an I/O request for several disk blocks as a single 

operation on a block group 

 Maintains bit map of free blocks in a block group, searches for free 

byte to allocate at least 8 blocks at a time 
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Ext2fs Block-Allocation Policies 
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Journaling 

 ext3 implements journaling, with file system updates first 

written to a log file in the form of transactions 

 Once in log file, considered committed 

 Over time, log file transactions replayed over file system to 

put changes in place 

 On system crash, some transactions might be in journal but not 

yet placed into file system 

 Must be completed once system recovers 

 No other consistency checking is needed after a crash 

(much faster than older methods) 

 Improves write performance on hard disks by turning random 

I/O into sequential I/O 
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The Linux Proc File System 

 The proc file system does not store data, rather, its contents 

are computed on demand according to user file I/O requests 

 proc must implement a directory structure, and the file contents 

within; it must then define a unique and persistent inode 

number for each directory and files it contains 

 It uses this inode number to identify just what operation is 

required when a user tries to read from a particular file 

inode or perform a lookup in a particular directory inode 

 When data is read from one of these files, proc collects the 

appropriate information, formats it into text form and places 

it into the requesting process’s read buffer 
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Input and Output 

 The Linux device-oriented file system accesses disk storage 

through two caches: 

 Data is cached in the page cache, which is unified with the 

virtual memory system 

 Metadata is cached in the buffer cache, a separate cache 

indexed by the physical disk block 

 Linux splits all devices into three classes: 

 block devices allow random access to completely 

independent, fixed size blocks of data 

 character devices include most other devices; they don’t 
need to support the functionality of regular files 

 network devices are interfaced via the kernel’s networking 

subsystem 
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Block Devices 

 Provide the main interface to all disk devices in a system 

 The block buffer cache serves two main purposes: 

 it acts as a pool of buffers for active I/O 

 it serves as a cache for completed I/O 

 The request manager manages the reading and writing of buffer 

contents to and from a block device driver 

 Kernel 2.6 introduced Completely Fair Queueing (CFQ) 

 Now the default scheduler 

 Fundamentally different from elevator algorithms 

 Maintains set of lists, one for each process by default 

 Uses C-SCAN algorithm, with round robin between all 

outstanding I/O from all processes 

 Four blocks from each process put on at once 
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Device-Driver Block Structure 
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Character Devices 

 A device driver which does not offer random access to fixed 

blocks of data 

 A character device driver must register a set of functions which 

implement the driver’s various file I/O operations 

 The kernel performs almost no preprocessing of a file read or 

write request to a character device, but simply passes on the 

request to the device 

 The main exception to this rule is the special subset of character 

device drivers which implement terminal devices, for which the 

kernel maintains a standard interface 
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Character Devices (Cont.) 

 Line discipline is an interpreter for the information from the 

terminal device 

 The most common line discipline is tty discipline, which glues 

the terminal’s data stream onto standard input and output 

streams of user’s running processes, allowing processes to 

communicate directly with the user’s terminal 

 Several processes may be running simultaneously, tty line 

discipline responsible for attaching and detaching terminal’s 

input and output from various processes connected to it as 

processes are suspended or awakened by user 

 Other line disciplines also are implemented have nothing to 

do with I/O to user process – i.e. PPP and SLIP networking 

protocols 
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Interprocess Communication 

 Like UNIX, Linux informs processes that an event has occurred 

via signals 

 There is a limited number of signals, and they cannot carry 

information:  Only the fact that a signal occurred is available to a 

process 

 The Linux kernel does not use signals to communicate with 

processes with are running in kernel mode, rather, 

communication within the kernel is accomplished via scheduling 
states and wait_queue structures 

 Also implements System V Unix semaphores 

 Process can wait for a signal or a semaphore 

 Semaphores scale better 

 Operations on multiple semaphores can be atomic 
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Passing Data Between Processes 

 The pipe mechanism allows a child process to inherit a 

communication channel to its parent, data written to one end 

of the pipe can be read a the other 

 Shared memory offers an extremely fast way of 

communicating; any data written by one process to a shared 

memory region can be read immediately by any other 

process that has mapped that region into its address space 

 To obtain synchronization, however, shared memory must 

be used in conjunction with another Interprocess-

communication mechanism 
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Network Structure 

 Networking is a key area of functionality for Linux 

 It supports the standard Internet protocols for UNIX to UNIX 

communications 

 It also implements protocols native to non-UNIX operating systems, in 

particular, protocols used on PC networks, such as Appletalk and IPX 

 Internally, networking in the Linux kernel is implemented by three 

layers of software: 

 The socket interface 

 Protocol drivers 

 Network device drivers 

 Most important set of protocols in the Linux networking system is the 

internet protocol suite 

 It implements routing between different hosts anywhere on the network 

 On top of the routing protocol are built the UDP, TCP and ICMP protocols 

 Packets also pass to firewall management for filtering based on 

firewall chains of rules 
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Security 

 The pluggable authentication modules (PAM) system is 

available under Linux 

 PAM is based on a shared library that can be used by any 

system component that needs to authenticate users 

 Access control under UNIX systems, including Linux, is 

performed through the use of unique numeric identifiers (uid 

and gid) 

 Access control is performed by assigning objects a protections 

mask, which specifies which access modes—read, write, or 

execute—are to be granted to processes with owner, group, or 

world access 
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Security (Cont.) 

 Linux augments the standard UNIX setuid mechanism in two 

ways: 

 It implements the POSIX specification’s saved user-id 

mechanism, which allows a process to repeatedly drop and 

reacquire its effective uid 

 It has added a process characteristic that grants just a 

subset of the rights of the effective uid 

 Linux provides another mechanism that allows a client to 

selectively pass access to a single file to some server process 

without granting it any other privileges 
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End of Chapter 18 


