
Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Chapter 18:

The Linux System

18.2 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Chapter 18: The Linux System

 Linux History

 Design Principles

 Kernel Modules

 Process Management

 Scheduling

 Memory Management

 File Systems

 Input and Output

 Interprocess Communication

 Network Structure

 Security

18.3 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Objectives

 To explore the history of the UNIX operating system from

which Linux is derived and the principles upon which Linux’s

design is based

 To examine the Linux process model and illustrate how Linux

schedules processes and provides interprocess

communication

 To look at memory management in Linux

 To explore how Linux implements file systems and manages

I/O devices

18.4 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

History

 Linux is a modern, free operating system based on UNIX
standards

 First developed as a small but self-contained kernel in 1991
by Linus Torvalds, with the major design goal of UNIX
compatibility, released as open source

 Its history has been one of collaboration by many users from
all around the world, corresponding almost exclusively over
the Internet

 It has been designed to run efficiently and reliably on
common PC hardware, but also runs on a variety of other
platforms

 The core Linux operating system kernel is entirely original,
but it can run much existing free UNIX software, resulting in
an entire UNIX-compatible operating system free from
proprietary code

 Linux system has many, varying Linux distributions
including the kernel, applications, and management tools

18.5 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

The Linux Kernel

 Version 0.01 (May 1991) had no networking, ran only on 80386-
compatible Intel processors and on PC hardware, had extremely
limited device-drive support, and supported only the Minix file
system

 Linux 1.0 (March 1994) included these new features:

 Support for UNIX’s standard TCP/IP networking protocols

 BSD-compatible socket interface for networking programming

 Device-driver support for running IP over an Ethernet

 Enhanced file system

 Support for a range of SCSI controllers for
high-performance disk access

 Extra hardware support

 Version 1.2 (March 1995) was the final PC-only Linux kernel

 Kernels with odd version numbers are development kernels,
those with even numbers are production kernels

18.6 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Linux 2.0

 Released in June 1996, 2.0 added two major new capabilities:

 Support for multiple architectures, including a fully 64-bit native Alpha
port

 Support for multiprocessor architectures

 Other new features included:

 Improved memory-management code

 Improved TCP/IP performance

 Support for internal kernel threads, for handling dependencies between
loadable modules, and for automatic loading of modules on demand

 Standardized configuration interface

 Available for Motorola 68000-series processors, Sun Sparc
systems, and for PC and PowerMac systems

 2.4 and 2.6 increased SMP support, added journaling file system,
preemptive kernel, 64-bit memory support

 3.0 released in 2011, 20th anniversary of Linux, improved
virtualization support, new page write-back facility, improved
memory management, new Completely Fair Scheduler

18.7 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

The Linux System

 Linux uses many tools developed as part of Berkeley’s BSD

operating system, MIT’s X Window System, and the Free

Software Foundation's GNU project

 The main system libraries were started by the GNU project, with

improvements provided by the Linux community

 Linux networking-administration tools were derived from 4.3BSD

code; recent BSD derivatives such as Free BSD have borrowed

code from Linux in return

 The Linux system is maintained by a loose network of developers

collaborating over the Internet, with a small number of public ftp

sites acting as de facto standard repositories

 File System Hierarchy Standard document maintained by the

Linux community to ensure compatibility across the various

system components

 Specifies overall layout of a standard Linux file system, determines

under which directory names configuration files, libraries, system

binaries, and run-time data files should be stored

18.8 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Linux Distributions

 Standard, precompiled sets of packages, or distributions,

include the basic Linux system, system installation and

management utilities, and ready-to-install packages of common

UNIX tools

 The first distributions managed these packages by simply

providing a means of unpacking all the files into the appropriate

places; modern distributions include advanced package

management

 Early distributions included SLS and Slackware

 Red Hat and Debian are popular distributions from

commercial and noncommercial sources, respectively,

others include Canonical and SuSE

 The RPM Package file format permits compatibility among the

various Linux distributions

18.9 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Linux Licensing

 The Linux kernel is distributed under the GNU General Public

License (GPL), the terms of which are set out by the Free

Software Foundation

 Not public domain, in that not all rights are waived

 Anyone using Linux, or creating their own derivative of Linux,

may not make the derived product proprietary; software

released under the GPL may not be redistributed as a binary-

only product

 Can sell distributions, but must offer the source code too

18.10 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Design Principles

 Linux is a multiuser, multitasking system with a full set of

UNIX-compatible tools

 Its file system adheres to traditional UNIX semantics, and it

fully implements the standard UNIX networking model

 Main design goals are speed, efficiency, and standardization

 Linux is designed to be compliant with the relevant POSIX

documents; at least two Linux distributions have achieved

official POSIX certification

 Supports Pthreads and a subset of POSIX real-time

process control

 The Linux programming interface adheres to the SVR4 UNIX

semantics, rather than to BSD behavior

18.11 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Components of a Linux System

18.12 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Components of a Linux System

 Like most UNIX implementations, Linux is composed of three

main bodies of code; the most important distinction between

the kernel and all other components.

 The kernel is responsible for maintaining the important

abstractions of the operating system

 Kernel code executes in kernel mode with full access to all

the physical resources of the computer

 All kernel code and data structures are kept in the same

single address space

18.13 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Components of a Linux System (Cont.)

 The system libraries define a standard set of functions

through which applications interact with the kernel, and which

implement much of the operating-system functionality that

does not need the full privileges of kernel code

 The system utilities perform individual specialized

management tasks

 User-mode programs rich and varied, including multiple

shells like the bourne-again (bash)

18.14 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Kernel Modules

 Sections of kernel code that can be compiled, loaded, and

unloaded independent of the rest of the kernel.

 A kernel module may typically implement a device driver, a file

system, or a networking protocol

 The module interface allows third parties to write and distribute, on

their own terms, device drivers or file systems that could not be

distributed under the GPL.

 Kernel modules allow a Linux system to be set up with a standard,

minimal kernel, without any extra device drivers built in.

 Four components to Linux module support:

 module-management system

 module loader and unloader

 driver-registration system

 conflict-resolution mechanism

18.15 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Module Management

 Supports loading modules into memory and letting them talk

to the rest of the kernel

 Module loading is split into two separate sections:

 Managing sections of module code in kernel memory

 Handling symbols that modules are allowed to reference

 The module requestor manages loading requested, but

currently unloaded, modules; it also regularly queries the

kernel to see whether a dynamically loaded module is still in

use, and will unload it when it is no longer actively needed

18.16 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Driver Registration

 Allows modules to tell the rest of the kernel that a new driver

has become available

 The kernel maintains dynamic tables of all known drivers, and

provides a set of routines to allow drivers to be added to or

removed from these tables at any time

 Registration tables include the following items:

 Device drivers

 File systems

 Network protocols

 Binary format

18.17 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Conflict Resolution

 A mechanism that allows different device drivers to reserve

hardware resources and to protect those resources from

accidental use by another driver.

 The conflict resolution module aims to:

 Prevent modules from clashing over access to hardware

resources

 Prevent autoprobes from interfering with existing device

drivers

 Resolve conflicts with multiple drivers trying to access the

same hardware:

1. Kernel maintains list of allocated HW resources

2. Driver reserves resources with kernel database first

3. Reservation request rejected if resource not available

18.18 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Process Management

 UNIX process management separates the creation of

processes and the running of a new program into two distinct

operations.

 The fork() system call creates a new process

 A new program is run after a call to exec()

 Under UNIX, a process encompasses all the information that

the operating system must maintain to track the context of a

single execution of a single program

 Under Linux, process properties fall into three groups: the

process’s identity, environment, and context

18.19 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Process Identity

 Process ID (PID) - The unique identifier for the process; used to
specify processes to the operating system when an application
makes a system call to signal, modify, or wait for another process

 Credentials - Each process must have an associated user ID
and one or more group IDs that determine the process’s rights to
access system resources and files

 Personality - Not traditionally found on UNIX systems, but under
Linux each process has an associated personality identifier that
can slightly modify the semantics of certain system calls

 Used primarily by emulation libraries to request that system
calls be compatible with certain specific flavors of UNIX

 Namespace – Specific view of file system hierarchy

 Most processes share common namespace and operate on a
shared file-system hierarchy

 But each can have unique file-system hierarchy with its own
root directory and set of mounted file systems

18.20 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Process Environment

 The process’s environment is inherited from its parent, and is

composed of two null-terminated vectors:

 The argument vector lists the command-line arguments

used to invoke the running program; conventionally starts

with the name of the program itself.

 The environment vector is a list of “NAME=VALUE” pairs

that associates named environment variables with arbitrary

textual values.

 Passing environment variables among processes and inheriting

variables by a process’s children are flexible means of passing

information to components of the user-mode system software.

 The environment-variable mechanism provides a customization

of the operating system that can be set on a per-process basis,

rather than being configured for the system as a whole.

18.21 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Process Context

 The (constantly changing) state of a running program at any

point in time

 The scheduling context is the most important part of the

process context; it is the information that the scheduler needs to

suspend and restart the process

 The kernel maintains accounting information about the

resources currently being consumed by each process, and the

total resources consumed by the process in its lifetime so far

 The file table is an array of pointers to kernel file structures

 When making file I/O system calls, processes refer to files by

their index into this table, the file descriptor (fd)

18.22 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Process Context (Cont.)

 Whereas the file table lists the existing open files, the

file-system context applies to requests to open new files

 The current root and default directories to be used for new

file searches are stored here

 The signal-handler table defines the routine in the process’s

address space to be called when specific signals arrive

 The virtual-memory context of a process describes the full

contents of the its private address space

18.23 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Processes and Threads

 Linux uses the same internal representation for processes and threads; a

thread is simply a new process that happens to share the same address

space as its parent

 Both are called tasks by Linux

 A distinction is only made when a new thread is created by the clone()

system call

 fork() creates a new task with its own entirely new task context

 clone() creates a new task with its own identity, but that is allowed

to share the data structures of its parent

 Using clone() gives an application fine-grained control over exactly what

is shared between two threads

18.24 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Scheduling

 The job of allocating CPU time to different tasks within an

operating system

 While scheduling is normally thought of as the running and

interrupting of processes, in Linux, scheduling also includes the

running of the various kernel tasks

 Running kernel tasks encompasses both tasks that are

requested by a running process and tasks that execute internally

on behalf of a device driver

 As of 2.5, new scheduling algorithm – preemptive, priority-based,

known as O(1)

 Real-time range

 nice value

 Had challenges with interactive performance

 2.6 introduced Completely Fair Scheduler (CFS)

18.25 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

CFS

 Eliminates traditional, common idea of time slice

 Instead all tasks allocated portion of processor’s time

 CFS calculates how long a process should run as a function

of total number of tasks

 N runnable tasks means each gets 1/N of processor’s time

 Then weights each task with its nice value

 Smaller nice value -> higher weight (higher priority)

18.26 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

CFS (Cont.)

 Then each task run with for time proportional to task’s weight

divided by total weight of all runnable tasks

 Configurable variable target latency is desired interval during

which each task should run at least once

 Consider simple case of 2 runnable tasks with equal weight

and target latency of 10ms – each then runs for 5ms

 If 10 runnable tasks, each runs for 1ms

 Minimum granularity ensures each run has reasonable

amount of time (which actually violates fairness idea)

18.27 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Kernel Synchronization

 A request for kernel-mode execution can occur in two ways:

 A running program may request an operating system

service, either explicitly via a system call, or implicitly, for

example, when a page fault occurs

 A device driver may deliver a hardware interrupt that

causes the CPU to start executing a kernel-defined

handler for that interrupt

 Kernel synchronization requires a framework that will allow

the kernel’s critical sections to run without interruption by

another critical section

18.28 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Kernel Synchronization (Cont.)

 Linux uses two techniques to protect critical sections:

1. Normal kernel code is nonpreemptible (until 2.6)

– when a time interrupt is received while a process is

 executing a kernel system service routine, the kernel’s

 need_resched flag is set so that the scheduler will run

 once the system call has completed and control is

 about to be returned to user mode

2. The second technique applies to critical sections that occur in an

interrupt service routines

 – By using the processor’s interrupt control hardware to disable

interrupts during a critical section, the kernel guarantees that it can

proceed without the risk of concurrent access of shared data structures

 Provides spin locks, semaphores, and reader-writer versions of both

 Behavior modified if on single processor or multi:

18.29 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Kernel Synchronization (Cont.)

 To avoid performance penalties, Linux’s kernel uses a

synchronization architecture that allows long critical sections to

run without having interrupts disabled for the critical section’s

entire duration

 Interrupt service routines are separated into a top half and a

bottom half

 The top half is a normal interrupt service routine, and runs

with recursive interrupts disabled

 The bottom half is run, with all interrupts enabled, by a

miniature scheduler that ensures that bottom halves never

interrupt themselves

 This architecture is completed by a mechanism for disabling

selected bottom halves while executing normal, foreground

kernel code

18.30 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Interrupt Protection Levels

 Each level may be interrupted by code running at a higher
level, but will never be interrupted by code running at the
same or a lower level

 User processes can always be preempted by another
process when a time-sharing scheduling interrupt occurs

18.31 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Symmetric Multiprocessing

 Linux 2.0 was the first Linux kernel to support SMP hardware;

separate processes or threads can execute in parallel on

separate processors

 Until version 2.2, to preserve the kernel’s nonpreemptible

synchronization requirements, SMP imposes the restriction, via a

single kernel spinlock, that only one processor at a time may

execute kernel-mode code

 Later releases implement more scalability by splitting single

spinlock into multiple locks, each protecting a small subset of

kernel data structures

 Version 3.0 adds even more fine-grained locking, processor

affinity, and load-balancing

18.32 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Memory Management

 Linux’s physical memory-management system deals with

allocating and freeing pages, groups of pages, and small blocks

of memory

 It has additional mechanisms for handling virtual memory,

memory mapped into the address space of running processes

 Splits memory into four different zones due to hardware

characteristics

 Architecture specific, for example on x86:

18.33 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Managing Physical Memory

 The page allocator allocates and frees all physical pages; it
can allocate ranges of physically-contiguous pages on
request

 The allocator uses a buddy-heap algorithm to keep track of
available physical pages

 Each allocatable memory region is paired with an
adjacent partner

 Whenever two allocated partner regions are both freed
up they are combined to form a larger region

 If a small memory request cannot be satisfied by
allocating an existing small free region, then a larger free
region will be subdivided into two partners to satisfy the
request

18.34 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Managing Physical Memory (Cont.)

 Memory allocations in the Linux kernel occur either statically
(drivers reserve a contiguous area of memory during system
boot time) or dynamically (via the page allocator)

 Also uses slab allocator for kernel memory

 Page cache and virtual memory system also manage
physical memory

 Page cache is kernel’s main cache for files and main
mechanism for I/O to block devices

 Page cache stores entire pages of file contents for local
and network file I/O

18.35 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Splitting of Memory in a Buddy Heap

18.36 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Slab Allocator in Linux

18.37 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Virtual Memory

 The VM system maintains the address space visible to each

process: It creates pages of virtual memory on demand, and

manages the loading of those pages from disk or their swapping

back out to disk as required.

 The VM manager maintains two separate views of a process’s

address space:

 A logical view describing instructions concerning the layout of

the address space

 The address space consists of a set of non-overlapping

regions, each representing a continuous, page-aligned

subset of the address space

 A physical view of each address space which is stored in the

hardware page tables for the process

18.38 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Virtual Memory (Cont.)

 Virtual memory regions are characterized by:

 The backing store, which describes from where the pages for

a region come; regions are usually backed by a file or by

nothing (demand-zero memory)

 The region’s reaction to writes (page sharing or copy-on-

write

 The kernel creates a new virtual address space

1. When a process runs a new program with the exec()

system call

2. Upon creation of a new process by the fork() system call

18.39 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Virtual Memory (Cont.)

 On executing a new program, the process is given a new,

completely empty virtual-address space; the program-loading

routines populate the address space with virtual-memory regions

 Creating a new process with fork() involves creating a

complete copy of the existing process’s virtual address space

 The kernel copies the parent process’s VMA descriptors,

then creates a new set of page tables for the child

 The parent’s page tables are copied directly into the child’s,

with the reference count of each page covered being

incremented

 After the fork, the parent and child share the same physical

pages of memory in their address spaces

18.40 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Swapping and Paging

 The VM paging system relocates pages of memory from

physical memory out to disk when the memory is needed for

something else

 The VM paging system can be divided into two sections:

 The pageout-policy algorithm decides which pages to

write out to disk, and when

 The paging mechanism actually carries out the transfer,

and pages data back into physical memory as needed

 Can page out to either swap device or normal files

 Bitmap used to track used blocks in swap space kept in

physical memory

 Allocator uses next-fit algorithm to try to write contiguous

runs

18.41 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Kernel Virtual Memory

 The Linux kernel reserves a constant, architecture-dependent

region of the virtual address space of every process for its own

internal use

 This kernel virtual-memory area contains two regions:

 A static area that contains page table references to every

available physical page of memory in the system, so that

there is a simple translation from physical to virtual

addresses when running kernel code

 The reminder of the reserved section is not reserved for

any specific purpose; its page-table entries can be modified

to point to any other areas of memory

18.42 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Executing and Loading User Programs

 Linux maintains a table of functions for loading programs; it gives

each function the opportunity to try loading the given file when an

exec system call is made

 The registration of multiple loader routines allows Linux to support

both the ELF and a.out binary formats

 Initially, binary-file pages are mapped into virtual memory

 Only when a program tries to access a given page will a page

fault result in that page being loaded into physical memory

 An ELF-format binary file consists of a header followed by several

page-aligned sections

 The ELF loader works by reading the header and mapping the

sections of the file into separate regions of virtual memory

18.43 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Memory Layout for ELF Programs

18.44 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Static and Dynamic Linking

 A program whose necessary library functions are embedded

directly in the program’s executable binary file is statically

linked to its libraries

 The main disadvantage of static linkage is that every program

generated must contain copies of exactly the same common

system library functions

 Dynamic linking is more efficient in terms of both physical

memory and disk-space usage because it loads the system

libraries into memory only once

18.45 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Static and Dynamic Linking (Cont.)

 Linux implements dynamic linking in user mode through special

linker library

 Every dynamically linked program contains small statically

linked function called when process starts

 Maps the link library into memory

 Link library determines dynamic libraries required by process

and names of variables and functions needed

 Maps libraries into middle of virtual memory and resolves

references to symbols contained in the libraries

 Shared libraries compiled to be position-independent code

(PIC) so can be loaded anywhere

18.46 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

File Systems

 To the user, Linux’s file system appears as a hierarchical directory tree

obeying UNIX semantics

 Internally, the kernel hides implementation details and manages the

multiple different file systems via an abstraction layer, that is, the virtual

file system (VFS)

 The Linux VFS is designed around object-oriented principles and is

composed of four components:

 A set of definitions that define what a file object is allowed to look like

 The inode object structure represent an individual file

 The file object represents an open file

 The superblock object represents an entire file system

 A dentry object represents an individual directory entry

18.47 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

File Systems (Cont.)

 To the user, Linux’s file system appears as a hierarchical

directory tree obeying UNIX semantics

 Internally, the kernel hides implementation details and manages

the multiple different file systems via an abstraction layer, that is,

the virtual file system (VFS)

 The Linux VFS is designed around object-oriented principles and

layer of software to manipulate those objects with a set of

operations on the objects

 For example for the file object operations include (from struct

file_operations in /usr/include/linux/fs.h

 int open(. . .) — Open a file

 ssize t read(. . .) — Read from a file

 ssize t write(. . .) — Write to a file

 int mmap(. . .) — Memory-map a file

18.48 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

The Linux ext3 File System

 ext3 is standard on disk file system for Linux

 Uses a mechanism similar to that of BSD Fast File

System (FFS) for locating data blocks belonging to a

specific file

 Supersedes older extfs, ext2 file systems

 Work underway on ext4 adding features like extents

 Of course, many other file system choices with Linux

distros

18.49 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

The Linux ext3 File System (Cont.)

 The main differences between ext2fs and FFS concern their disk

allocation policies

 In ffs, the disk is allocated to files in blocks of 8Kb, with blocks being

subdivided into fragments of 1Kb to store small files or partially filled

blocks at the end of a file

 ext3 does not use fragments; it performs its allocations in smaller

units

 The default block size on ext3 varies as a function of total size of

file system with support for 1, 2, 4 and 8 KB blocks

 ext3 uses cluster allocation policies designed to place logically

adjacent blocks of a file into physically adjacent blocks on disk, so

that it can submit an I/O request for several disk blocks as a single

operation on a block group

 Maintains bit map of free blocks in a block group, searches for free

byte to allocate at least 8 blocks at a time

18.50 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Ext2fs Block-Allocation Policies

18.51 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Journaling

 ext3 implements journaling, with file system updates first

written to a log file in the form of transactions

 Once in log file, considered committed

 Over time, log file transactions replayed over file system to

put changes in place

 On system crash, some transactions might be in journal but not

yet placed into file system

 Must be completed once system recovers

 No other consistency checking is needed after a crash

(much faster than older methods)

 Improves write performance on hard disks by turning random

I/O into sequential I/O

18.52 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

The Linux Proc File System

 The proc file system does not store data, rather, its contents

are computed on demand according to user file I/O requests

 proc must implement a directory structure, and the file contents

within; it must then define a unique and persistent inode

number for each directory and files it contains

 It uses this inode number to identify just what operation is

required when a user tries to read from a particular file

inode or perform a lookup in a particular directory inode

 When data is read from one of these files, proc collects the

appropriate information, formats it into text form and places

it into the requesting process’s read buffer

18.53 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Input and Output

 The Linux device-oriented file system accesses disk storage

through two caches:

 Data is cached in the page cache, which is unified with the

virtual memory system

 Metadata is cached in the buffer cache, a separate cache

indexed by the physical disk block

 Linux splits all devices into three classes:

 block devices allow random access to completely

independent, fixed size blocks of data

 character devices include most other devices; they don’t
need to support the functionality of regular files

 network devices are interfaced via the kernel’s networking

subsystem

18.54 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Block Devices

 Provide the main interface to all disk devices in a system

 The block buffer cache serves two main purposes:

 it acts as a pool of buffers for active I/O

 it serves as a cache for completed I/O

 The request manager manages the reading and writing of buffer

contents to and from a block device driver

 Kernel 2.6 introduced Completely Fair Queueing (CFQ)

 Now the default scheduler

 Fundamentally different from elevator algorithms

 Maintains set of lists, one for each process by default

 Uses C-SCAN algorithm, with round robin between all

outstanding I/O from all processes

 Four blocks from each process put on at once

18.55 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Device-Driver Block Structure

18.56 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Character Devices

 A device driver which does not offer random access to fixed

blocks of data

 A character device driver must register a set of functions which

implement the driver’s various file I/O operations

 The kernel performs almost no preprocessing of a file read or

write request to a character device, but simply passes on the

request to the device

 The main exception to this rule is the special subset of character

device drivers which implement terminal devices, for which the

kernel maintains a standard interface

18.57 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Character Devices (Cont.)

 Line discipline is an interpreter for the information from the

terminal device

 The most common line discipline is tty discipline, which glues

the terminal’s data stream onto standard input and output

streams of user’s running processes, allowing processes to

communicate directly with the user’s terminal

 Several processes may be running simultaneously, tty line

discipline responsible for attaching and detaching terminal’s

input and output from various processes connected to it as

processes are suspended or awakened by user

 Other line disciplines also are implemented have nothing to

do with I/O to user process – i.e. PPP and SLIP networking

protocols

18.58 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Interprocess Communication

 Like UNIX, Linux informs processes that an event has occurred

via signals

 There is a limited number of signals, and they cannot carry

information: Only the fact that a signal occurred is available to a

process

 The Linux kernel does not use signals to communicate with

processes with are running in kernel mode, rather,

communication within the kernel is accomplished via scheduling
states and wait_queue structures

 Also implements System V Unix semaphores

 Process can wait for a signal or a semaphore

 Semaphores scale better

 Operations on multiple semaphores can be atomic

18.59 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Passing Data Between Processes

 The pipe mechanism allows a child process to inherit a

communication channel to its parent, data written to one end

of the pipe can be read a the other

 Shared memory offers an extremely fast way of

communicating; any data written by one process to a shared

memory region can be read immediately by any other

process that has mapped that region into its address space

 To obtain synchronization, however, shared memory must

be used in conjunction with another Interprocess-

communication mechanism

18.60 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Network Structure

 Networking is a key area of functionality for Linux

 It supports the standard Internet protocols for UNIX to UNIX

communications

 It also implements protocols native to non-UNIX operating systems, in

particular, protocols used on PC networks, such as Appletalk and IPX

 Internally, networking in the Linux kernel is implemented by three

layers of software:

 The socket interface

 Protocol drivers

 Network device drivers

 Most important set of protocols in the Linux networking system is the

internet protocol suite

 It implements routing between different hosts anywhere on the network

 On top of the routing protocol are built the UDP, TCP and ICMP protocols

 Packets also pass to firewall management for filtering based on

firewall chains of rules

18.61 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Security

 The pluggable authentication modules (PAM) system is

available under Linux

 PAM is based on a shared library that can be used by any

system component that needs to authenticate users

 Access control under UNIX systems, including Linux, is

performed through the use of unique numeric identifiers (uid

and gid)

 Access control is performed by assigning objects a protections

mask, which specifies which access modes—read, write, or

execute—are to be granted to processes with owner, group, or

world access

18.62 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Security (Cont.)

 Linux augments the standard UNIX setuid mechanism in two

ways:

 It implements the POSIX specification’s saved user-id

mechanism, which allows a process to repeatedly drop and

reacquire its effective uid

 It has added a process characteristic that grants just a

subset of the rights of the effective uid

 Linux provides another mechanism that allows a client to

selectively pass access to a single file to some server process

without granting it any other privileges

Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

End of Chapter 18

