
Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Chapter 16: Virtual Machines

16.2 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Chapter 16: Virtual Machines

 Overview

 History

 Benefits and Features

 Building Blocks

 Types of Virtual Machines and Their Implementations

 Virtualization and Operating-System Components

 Examples

16.3 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Chapter Objectives

 To explore the history and benefits of virtual machines

 To discuss the various virtual machine technologies

 To describe the methods used to implement virtualization

 To show the most common hardware features that support

virtualization and explain how they are used by operating-

system modules

16.4 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Overview

 Fundamental idea – abstract hardware of a single computer into

several different execution environments

 Similar to layered approach

 But layer creates virtual system (virtual machine, or VM) on which

operation systems or applications can run

 Several components

 Host – underlying hardware system

 Virtual machine manager (VMM) or hypervisor – creates and

runs virtual machines by providing interface that is identical to the

host

 (Except in the case of paravirtualization)

 Guest – process provided with virtual copy of the host

 Usually an operating system

 Single physical machine can run multiple operating systems

concurrently, each in its own virtual machine

16.5 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

System Models

 Non-virtual machine Virtual machine

16.6 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Implementation of VMMs

 Vary greatly, with options including:

 Type 0 hypervisors - Hardware-based solutions that provide

support for virtual machine creation and management via firmware

 IBM LPARs and Oracle LDOMs are examples

 Type 1 hypervisors - Operating-system-like software built to

provide virtualization

 Including VMware ESX, Joyent SmartOS, and Citrix XenServer

 Type 1 hypervisors – Also includes general-purpose operating

systems that provide standard functions as well as VMM functions

 Including Microsoft Windows Server with HyperV and RedHat Linux

with KVM

 Type 2 hypervisors - Applications that run on standard operating

systems but provide VMM features to guest operating systems

 Includeing VMware Workstation and Fusion, Parallels Desktop, and

Oracle VirtualBox

16.7 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Implementation of VMMs (cont.)

 Other variations include:

 Paravirtualization - Technique in which the guest operating system is

modified to work in cooperation with the VMM to optimize performance

 Programming-environment virtualization - VMMs do not virtualize real

hardware but instead create an optimized virtual system

 Used by Oracle Java and Microsoft.Net

 Emulators – Allow applications written for one hardware environment to

run on a very different hardware environment, such as a different type of

CPU

 Application containment - Not virtualization at all but rather provides

virtualization-like features by segregating applications from the operating

system, making them more secure, manageable

 Including Oracle Solaris Zones, BSD Jails, and IBM AIX WPARs

 Much variation due to breadth, depth and importance of virtualization

in modern computing

16.8 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

History

 First appeared in IBM mainframes in 1972

 Allowed multiple users to share a batch-oriented system

 Formal definition of virtualization helped move it beyond IBM

1. A VMM provides an environment for programs that is

essentially identical to the original machine

2. Programs running within that environment show only minor

performance decreases

3. The VMM is in complete control of system resources

 In late 1990s Intel CPUs fast enough for researchers to try

virtualizing on general purpose PCs

 Xen and VMware created technologies, still used today

 Virtualization has expanded to many OSes, CPUs, VMMs

16.9 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Benefits and Features

 Host system protected from VMs, VMs protected from each other

 I.e. A virus less likely to spread

 Sharing is provided though via shared file system volume,

network communication

 Freeze, suspend, running VM

 Then can move or copy somewhere else and resume

 Snapshot of a given state, able to restore back to that state

 Some VMMs allow multiple snapshots per VM

 Clone by creating copy and running both original and copy

 Great for OS research, better system development efficiency

 Run multiple, different OSes on a single machine

 Consolidation, app dev, …

16.10 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Benefits and Features (cont.)

 Templating – create an OS + application VM, provide it to

customers, use it to create multiple instances of that combination

 Live migration – move a running VM from one host to another!

 No interruption of user access

 All those features taken together -> cloud computing

 Using APIs, programs tell cloud infrastructure (servers,

networking, storage) to create new guests, VMs, virtual

desktops

16.11 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Building Blocks

 Generally difficult to provide an exact duplicate of underlying

machine

 Especially if only dual-mode operation available on CPU

 But getting easier over time as CPU features and support for

VMM improves

 Most VMMs implement virtual CPU (VCPU) to represent

state of CPU per guest as guest believes it to be

 When guest context switched onto CPU by VMM,

information from VCPU loaded and stored

 Several techniques, as described in next slides

16.12 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Building Block – Trap and Emulate

 Dual mode CPU means guest executes in user mode

 Kernel runs in kernel mode

 Not safe to let guest kernel run in kernel mode too

 So VM needs two modes – virtual user mode and virtual

kernel mode

 Both of which run in real user mode

 Actions in guest that usually cause switch to kernel mode

must cause switch to virtual kernel mode

16.13 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Trap-and-Emulate (cont.)

 How does switch from virtual user mode to virtual kernel mode

occur?

 Attempting a privileged instruction in user mode causes an error

-> trap

 VMM gains control, analyzes error, executes operation as

attempted by guest

 Returns control to guest in user mode

 Known as trap-and-emulate

 Most virtualization products use this at least in part

 User mode code in guest runs at same speed as if not a guest

 But kernel mode privilege mode code runs slower due to trap-and-

emulate

 Especially a problem when multiple guests running, each

needing trap-and-emulate

 CPUs adding hardware support, mode CPU modes to improve

virtualization performance

16.14 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Trap-and-Emulate Virtualization Implementation

16.15 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Building Block – Binary Translation

 Some CPUs don’t have clean separation between privileged

and nonprivileged instructions

 Earlier Intel x86 CPUs are among them

 Earliest Intel CPU designed for a calculator

 Backward compatibility means difficult to improve

 Consider Intel x86 popf instruction

 Loads CPU flags register from contents of the stack

 If CPU in privileged mode -> all flags replaced

 If CPU in user mode -> on some flags replaced

– No trap is generated

16.16 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Binary Translation (cont.)

 Other similar problem instructions we will call special instructions

 Caused trap-and-emulate method considered impossible until 1998

 Binary translation solves the problem

 Basics are simple, but implementation very complex

1. If guest VCPU is in user mode, guest can run instructions natively

2. If guest VCPU in kernel mode (guest believes it is in kernel mode)

1. VMM examines every instruction guest is about to execute by

reading a few instructions ahead of program counter

2. Non-special-instructions run natively

3. Special instructions translated into new set of instructions that

perform equivalent task (for example changing the flags in the

VCPU)

16.17 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Binary Translation (cont.)

 Implemented by translation of code within VMM

 Code reads native instructions dynamically from guest, on demand,

generates native binary code that executes in place of original code

 Performance of this method would be poor without optimizations

 Products like VMware use caching

 Translate once, and when guest executes code containing

special instruction cached translation used instead of

translating again

 Testing showed booting Windows XP as guest caused

950,000 translations, at 3 microseconds each, or 3 second

(5 %) slowdown over native

16.18 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Binary Translation Virtualization Implementation

16.19 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Nested Page Tables

 Memory management another general challenge to VMM implementations

 How can VMM keep page-table state for both guests believing they control

the page tables and VMM that does control the tables?

 Common method (for trap-and-emulate and binary translation) is nested

page tables (NPTs)

 Each guest maintains page tables to translate virtual to physical

addresses

 VMM maintains per guest NPTs to represent guest’s page-table state

 Just as VCPU stores guest CPU state

 When guest on CPU -> VMM makes that guest’s NPTs the active system

page tables

 Guest tries to change page table -> VMM makes equivalent change to

NPTs and its own page tables

 Can cause many more TLB misses -> much slower performance

16.20 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Building Blocks – Hardware Assistance

 All virtualization needs some HW support

 More support -> more feature rich, stable, better performance of

guests

 Intel added new VT-x instructions in 2005 and AMD the AMD-V

instructions in 2006

 CPUs with these instructions remove need for binary translation

 Generally define more CPU modes – “guest” and “host”

 VMM can enable host mode, define characteristics of each guest VM,

switch to guest mode and guest(s) on CPU(s)

 In guest mode, guest OS thinks it is running natively, sees devices (as

defined by VMM for that guest)

 Access to virtualized device, priv instructions cause trap to VMM

 CPU maintains VCPU, context switches it as needed

 HW support for Nested Page Tables, DMA, interrupts as well over

time

16.21 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Nested Page Tables

16.22 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Types of Virtual Machines and Implementations

 Many variations as well as HW details

 Assume VMMs take advantage of HW features

 HW features can simplify implementation, improve performance

 Whatever the type, a VM has a lifecycle

 Created by VMM

 Resources assigned to it (number of cores, amount of memory,

networking details, storage details)

 In type 0 hypervisor, resources usually dedicated

 Other types dedicate or share resources, or a mix

 When no longer needed, VM can be deleted, freeing resouces

 Steps simpler, faster than with a physical machine install

 Can lead to virtual machine sprawl with lots of VMs, history and

state difficult to track

16.23 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Types of VMs – Type 0 Hypervisor

 Old idea, under many names by HW manufacturers

 “partitions”, “domains”

 A HW feature implemented by firmware

 OS need to nothing special, VMM is in firmware

 Smaller feature set than other types

 Each guest has dedicated HW

 I/O a challenge as difficult to have enough devices, controllers to

dedicate to each guest

 Sometimes VMM implements a control partition running

daemons that other guests communicate with for shared I/O

 Can provide virtualization-within-virtualization (guest itself can be

a VMM with guests

 Other types have difficulty doing this

16.24 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Type 0 Hypervisor

16.25 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Types of VMs – Type 1 Hypervisor

 Commonly found in company datacenters

 In a sense becoming “datacenter operating systems”

 Datacenter managers control and manage OSes in new,

sophisticated ways by controlling the Type 1 hypervisor

 Consolidation of multiple OSes and apps onto less HW

 Move guests between systems to balance performance

 Snapshots and cloning

 Special purpose operating systems that run natively on HW

 Rather than providing system call interface, create run and manage

guest OSes

 Can run on Type 0 hypervisors but not on other Type 1s

 Run in kernel mode

 Guests generally don’t know they are running in a VM

 Implement device drivers for host HW because no other component can

 Also provide other traditional OS services like CPU and memory

management

16.26 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Types of VMs – Type 1 Hypervisor (cont.)

 Another variation is a general purpose OS that also provides

VMM functionality

 RedHat Enterprise Linux with KVM, Windows with Hyper-V,

Oracle Solaris

 Perform normal duties as well as VMM duties

 Typically less feature rich than dedicated Type 1 hypervisors

 In many ways, treat guests OSes as just another process

 Albeit with special handling when guest tries to execute

special instructions

16.27 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Types of VMs – Type 2 Hypervisor

 Less interesting from an OS perspective

 Very little OS involvement in virtualization

 VMM is simply another process, run and managed by host

 Even the host doesn’t know they are a VMM running

guests

 Tend to have poorer overall performance because can’t take

advantage of some HW features

 But also a benefit because require no changes to host OS

 Student could have Type 2 hypervisor on native host, run

multiple guests, all on standard host OS such as

Windows, Linux, MacOS

16.28 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Types of VMs – Paravirtualization

 Does not fit the definition of virtualization – VMM not presenting

an exact duplication of underlying hardware

 But still useful!

 VMM provides services that guest must be modified to use

 Leads to increased performance

 Less needed as hardware support for VMs grows

 Xen, leader in paravirtualized space, adds several techniques

 For example, clean and simple device abstractions

 Efficient I/O

 Good communication between guest and VMM about

device I/O

 Each device has circular buffer shared by guest and VMM

via shared memory

16.29 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Xen I/O via Shared Circular Buffer

16.30 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Types of VMs – Paravirtualization (cont.)

 Xen, leader in paravirtualized space, adds several techniques

(Cont.)

 Memory management does not include nested page tables

 Each guest has own read-only tables

 Guest uses hypercall (call to hypervisor) when page-

table changes needed

 Paravirtualization allowed virtualization of older x86 CPUs (and

others) without binary translation

 Guest had to be modified to use run on paravirtualized VMM

 But on modern CPUs Xen no longer requires guest modification

-> no longer paravirtualization

16.31 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Types of VMs – Programming Environment Virtualization

 Also not-really-virtualization but using same techniques, providing

similar features

 Programming language is designed to run within custom-built

virtualized environment

 For example Oracle Java has many features that depend on

running in Java Virtual Machine (JVM)

 In this case virtualization is defined as providing APIs that define a

set of features made available to a language and programs written

in that language to provide an improved execution environment

 JVM compiled to run on many systems (including some smart

phones even)

 Programs written in Java run in the JVM no matter the underlying

system

 Similar to interpreted languages

16.32 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Types of VMs – Emulation

 Another (older) way for running one operating system on a different

operating system

 Virtualization requires underlying CPU to be same as guest was

compiled for

 Emulation allows guest to run on different CPU

 Necessary to translate all guest instructions from guest CPU to native

CPU

 Emulation, not virtualization

 Useful when host system has one architecture, guest compiled for

other architecture

 Company replacing outdated servers with new servers containing

different CPU architecture, but still want to run old applications

 Performance challenge – order of magnitude slower than native code

 New machines faster than older machines so can reduce slowdown

 Very popular – especially in gaming where old consoles emulated on

new

16.33 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Types of VMs – Application Containment

 Some goals of virtualization are segregation of apps, performance and

resource management, easy start, stop, move, and management of

them

 Can do those things without full-fledged virtualization

 If applications compiled for the host operating system, don’t need

full virtualization to meet these goals

 Oracle containers / zones for example create virtual layer between

OS and apps

 Only one kernel running – host OS

 OS and devices are virtualized, providing resources within zone

with impression that they are only processes on system

 Each zone has its own applications; networking stack, addresses,

and ports; user accounts, etc

 CPU and memory resources divided between zones

 Zone can have its own scheduler to use those resources

16.34 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Solaris 10 with Two Zones

16.35 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Virtualization and Operating-System Components

 Now look at operating system aspects of virtualization

 CPU scheduling, memory management, I/O, storage, and

unique VM migration feature

 How do VMMs schedule CPU use when guests believe

they have dedicated CPUs?

 How can memory management work when many guests

require large amounts of memory?

16.36 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

OS Component – CPU Scheduling

 Even single-CPU systems act like multiprocessor ones when

virtualized

 One or more virtual CPUs per guest

 Generally VMM has one or more physical CPUs and number of

threads to run on them

 Guests configured with certain number of VCPUs

 Can be adjusted throughout life of VM

 When enough CPUs for all guests -> VMM can allocate dedicated

CPUs, each guest much like native operating system managing its

CPUs

 Usually not enough CPUs -> CPU overcommitment

 VMM can use standard scheduling algorithms to put threads on

CPUs

 Some add fairness aspect

16.37 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

OS Component – CPU Scheduling (cont.)

 Cycle stealing by VMM and oversubscription of CPUs means

guests don’t get CPU cycles they expect

 Consider timesharing scheduler in a guest trying to

schedule 100ms time slices -> each may take 100ms, 1

second, or longer

 Poor response times for users of guest

 Time-of-day clocks incorrect

 Some VMMs provide application to run in each guest to

fix time-of-day and provide other integration features

16.38 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

OS Component – Memory Management

 Also suffers from oversubscription -> requires extra management

efficiency from VMM

 For example, VMware ESX guests have a configured amount of physical

memory, then ESX uses 3 methods of memory management

1. Double-paging, in which the guest page table indicates a page is in

a physical frame but the VMM moves some of those pages to

backing store

2. Install a pseudo-device driver in each guest (it looks like a device

driver to the guest kernel but really just adds kernel-mode code to

the guest)

 Balloon memory manager communicates with VMM and is told

to allocate or deallocate memory to decrease or increase

physical memory use of guest, causing guest OS to free or

have more memory available

3. Deduplication by VMM determining if same page loaded more than

once, memory mapping the same page into multiple guests

16.39 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

OS Component – I/O

 Easier for VMMs to integrate with guests because I/O has lots of

variation

 Already somewhat segregated / flexible via device drivers

 VMM can provide new devices and device drivers

 But overall I/O is complicated for VMMs

 Many short paths for I/O in standard OSes for improved performance

 Less hypervisor needs to do for I/O for guests, the better

 Possibilities include direct device access, DMA pass-through, direct

interrupt delivery

 Again, HW support needed for these

 Networking also complex as VMM and guests all need network access

 VMM can bridge guest to network (allowing direct access)

 And / or provide network address translation (NAT)

 NAT address local to machine on which guest is running, VMM

provides address translation to guest to hide its address

16.40 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

OS Component – Storage Management

 Both boot disk and general data access need be provided by VMM

 Need to support potentially dozens of guests per VMM (so standard

disk partitioning not sufficient)

 Type 1 – storage guest root disks and config information within file

system provided by VMM as a disk image

 Type 2 – store as files in file system provided by host OS

 Duplicate file -> create new guest

 Move file to another system -> move guest

 Physical-to-virtual (P-to-V) convert native disk blocks into VMM

format

 Virtual-to-physical (V-to-P) convert from virtual format to native or

disk format

 VMM also needs to provide access to network attached storage (just

networking) and other disk images, disk partitions, disks, etc

16.41 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

OS Component – Live Migration

 Taking advantage of VMM features leads to new functionality not found on

general operating systems such as live migration

 Running guest can be moved between systems, without interrupting user

access to the guest or its apps

 Very useful for resource management, maintenance downtime windows, etc

1. The source VMM establishes a connection with the target VMM

2. The target creates a new guest by creating a new VCPU, etc

3. The source sends all read-only guest memory pages to the target

4. The source sends all read-write pages to the target, marking them as

clean

5. The source repeats step 4, as during that step some pages were probably

modified by the guest and are now dirty

6. When cycle of steps 4 and 5 becomes very short, source VMM freezes

guest, sends VCPU’s final state, sends other state details, sends final dirty

pages, and tells target to start running the guest

 Once target acknowledges that guest running, source terminates guest

16.42 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Live Migration of Guest Between Servers

16.43 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Examples - VMware

 VMware Workstation runs on x86, provides VMM for guests

 Runs as application on other native, installed host operating

system -> Type 2

 Lots of guests possible, including Windows, Linux, etc all

runnable concurrently (as resources allow)

 Virtualization layer abstracts underlying HW, providing guest

with is own virtual CPUs, memory, disk drives, network

interfaces, etc

 Physical disks can be provided to guests, or virtual physical

disks (just files within host file system)

16.44 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

VMware Workstation Architecture

16.45 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Examples – Java Virtual Machine

 Example of programming-environment virtualization

 Very popular language / application environment invented by Sun

Microsystems in 1995

 Write once, run anywhere

 Includes language specification (Java), API library, Java virtual

machine (JVM)

 Java objects specified by class construct, Java program is one or

more objects

 Each Java object compiled into architecture-neutral bytecode
output (.class) which JVM class loader loads

 JVM compiled per architecture, reads bytecode and executes

 Includes garbage collection to reclaim memory no longer in use

 Made faster by just-in-time (JIT) compiler that turns bytecodes

into native code and caches them

16.46 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

The Java Virtual Machine

Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

End of Chapter 16

