
Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Chapter 14: Protection

14.2 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Chapter 14: Protection

 Goals of Protection

 Principles of Protection

 Domain of Protection

 Access Matrix

 Implementation of Access Matrix

 Access Control

 Revocation of Access Rights

 Capability-Based Systems

 Language-Based Protection

14.3 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Objectives

 Discuss the goals and principles of protection in a modern

computer system

 Explain how protection domains combined with an access

matrix are used to specify the resources a process may

access

 Examine capability and language-based protection systems

14.4 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Goals of Protection

 In one protection model, computer consists of a collection of

objects, hardware or software

 Each object has a unique name and can be accessed through

a well-defined set of operations

 Protection problem - ensure that each object is accessed
correctly and only by those processes that are allowed to do so

14.5 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Principles of Protection

 Guiding principle – principle of least privilege

 Programs, users and systems should be given just

enough privileges to perform their tasks

 Limits damage if entity has a bug, gets abused

 Can be static (during life of system, during life of

process)

 Or dynamic (changed by process as needed) – domain

switching, privilege escalation

 “Need to know” a similar concept regarding access to

data

14.6 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Principles of Protection (Cont.)

 Must consider “grain” aspect

 Rough-grained privilege management easier, simpler,

but least privilege now done in large chunks

 For example, traditional Unix processes either have

abilities of the associated user, or of root

 Fine-grained management more complex, more

overhead, but more protective

 File ACL lists, RBAC

 Domain can be user, process, procedure

14.7 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Domain Structure

 Access-right = <object-name, rights-set>

where rights-set is a subset of all valid operations that can

be performed on the object

 Domain = set of access-rights

14.8 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Domain Implementation (UNIX)

 Domain = user-id

 Domain switch accomplished via file system

 Each file has associated with it a domain bit (setuid bit)

 When file is executed and setuid = on, then user-id is

set to owner of the file being executed

 When execution completes user-id is reset

 Domain switch accomplished via passwords

 su command temporarily switches to another user’s

domain when other domain’s password provided

 Domain switching via commands

 sudo command prefix executes specified command in

another domain (if original domain has privilege or

password given)

14.9 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Domain Implementation (MULTICS)

 Let Di and Dj be any two domain rings

 If j < I Di Dj

14.10 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Multics Benefits and Limits

 Ring / hierarchical structure provided more than the basic

kernel / user or root / normal user design

 Fairly complex -> more overhead

 But does not allow strict need-to-know

 Object accessible in Dj but not in Di, then j must be < i

 But then every segment accessible in Di also

accessible in Dj

14.11 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Access Matrix

 View protection as a matrix (access matrix)

 Rows represent domains

 Columns represent objects

 Access(i, j) is the set of operations that a process

executing in Domaini can invoke on Objectj

14.12 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Use of Access Matrix

 If a process in Domain Di tries to do “op” on object Oj, then

“op” must be in the access matrix

 User who creates object can define access column for that

object

 Can be expanded to dynamic protection

 Operations to add, delete access rights

 Special access rights:

 owner of Oi

 copy op from Oi to Oj (denoted by “*”)

 control – Di can modify Dj access rights

 transfer – switch from domain Di to Dj

 Copy and Owner applicable to an object

 Control applicable to domain object

14.13 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Use of Access Matrix (Cont.)

 Access matrix design separates mechanism from policy

 Mechanism

 Operating system provides access-matrix + rules

 If ensures that the matrix is only manipulated by

authorized agents and that rules are strictly enforced

 Policy

 User dictates policy

 Who can access what object and in what mode

 But doesn’t solve the general confinement problem

14.14 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Access Matrix of Figure A with Domains as Objects

14.15 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Access Matrix with Copy Rights

14.16 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Access Matrix With Owner Rights

14.17 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Modified Access Matrix of Figure B

14.18 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Implementation of Access Matrix

 Generally, a sparse matrix

 Option 1 – Global table

 Store ordered triples <domain, object,
rights-set> in table

 A requested operation M on object Oj within domain
Di -> search table for < Di, Oj, Rk >

 with M ∈ Rk

 But table could be large -> won’t fit in main memory

 Difficult to group objects (consider an object that all
domains can read)

14.19 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Implementation of Access Matrix (Cont.)

 Option 2 – Access lists for objects

 Each column implemented as an access list for one
object

 Resulting per-object list consists of ordered pairs
<domain, rights-set> defining all domains with
non-empty set of access rights for the object

 Easily extended to contain default set -> If M ∈ default
set, also allow access

14.20 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Implementation of Access Matrix (Cont.)

 Each column = Access-control list for one object
Defines who can perform what operation

 Domain 1 = Read, Write
 Domain 2 = Read
 Domain 3 = Read

 Each Row = Capability List (like a key)
For each domain, what operations allowed on what objects

Object F1 – Read

Object F4 – Read, Write, Execute

Object F5 – Read, Write, Delete, Copy

14.21 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Implementation of Access Matrix (Cont.)

 Option 3 – Capability list for domains

 Instead of object-based, list is domain based

 Capability list for domain is list of objects together with operations

allows on them

 Object represented by its name or address, called a capability

 Execute operation M on object Oj, process requests operation and

specifies capability as parameter

 Possession of capability means access is allowed

 Capability list associated with domain but never directly accessible

by domain

 Rather, protected object, maintained by OS and accessed

indirectly

 Like a “secure pointer”

 Idea can be extended up to applications

14.22 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Implementation of Access Matrix (Cont.)

 Option 4 – Lock-key

 Compromise between access lists and capability lists

 Each object has list of unique bit patterns, called locks

 Each domain as list of unique bit patterns called keys

 Process in a domain can only access object if domain

has key that matches one of the locks

14.23 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Comparison of Implementations

 Many trade-offs to consider

 Global table is simple, but can be large

 Access lists correspond to needs of users

 Determining set of access rights for domain non-

localized so difficult

 Every access to an object must be checked

– Many objects and access rights -> slow

 Capability lists useful for localizing information for a given

process

 But revocation capabilities can be inefficient

 Lock-key effective and flexible, keys can be passed freely

from domain to domain, easy revocation

14.24 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Comparison of Implementations (Cont.)

 Most systems use combination of access lists and

capabilities

 First access to an object -> access list searched

 If allowed, capability created and attached to

process

– Additional accesses need not be checked

 After last access, capability destroyed

 Consider file system with ACLs per file

14.25 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Access Control

 Protection can be applied to non-file

resources

 Oracle Solaris 10 provides role-

based access control (RBAC) to

implement least privilege

 Privilege is right to execute

system call or use an option

within a system call

 Can be assigned to processes

 Users assigned roles granting

access to privileges and

programs

 Enable role via password to

gain its privileges

 Similar to access matrix

14.26 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Revocation of Access Rights

 Various options to remove the access right of a domain to an

object

 Immediate vs. delayed

 Selective vs. general

 Partial vs. total

 Temporary vs. permanent

 Access List – Delete access rights from access list

 Simple – search access list and remove entry

 Immediate, general or selective, total or partial,

permanent or temporary

14.27 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Revocation of Access Rights (Cont.)

 Capability List – Scheme required to locate capability in the

system before capability can be revoked

 Reacquisition – periodic delete, with require and denial if

revoked

 Back-pointers – set of pointers from each object to all

capabilities of that object (Multics)

 Indirection – capability points to global table entry which points

to object – delete entry from global table, not selective (CAL)

 Keys – unique bits associated with capability, generated when

capability created

 Master key associated with object, key matches master key

for access

 Revocation – create new master key

 Policy decision of who can create and modify keys – object

owner or others?

14.28 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Capability-Based Systems

 Hydra

 Fixed set of access rights known to and interpreted by the system

 i.e. read, write, or execute each memory segment

 User can declare other auxiliary rights and register those with

protection system

 Accessing process must hold capability and know name of

operation

 Rights amplification allowed by trustworthy procedures for a

specific type

 Interpretation of user-defined rights performed solely by user's

program; system provides access protection for use of these rights

 Operations on objects defined procedurally – procedures are

objects accessed indirectly by capabilities

 Solves the problem of mutually suspicious subsystems

 Includes library of prewritten security routines

14.29 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Capability-Based Systems (Cont.)

 Cambridge CAP System

 Simpler but powerful

 Data capability - provides standard read, write, execute

of individual storage segments associated with object –

implemented in microcode

 Software capability -interpretation left to the

subsystem, through its protected procedures

 Only has access to its own subsystem

 Programmers must learn principles and techniques

of protection

14.30 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Language-Based Protection

 Specification of protection in a programming language

allows the high-level description of policies for the

allocation and use of resources

 Language implementation can provide software for

protection enforcement when automatic hardware-

supported checking is unavailable

 Interpret protection specifications to generate calls on

whatever protection system is provided by the hardware

and the operating system

14.31 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Protection in Java 2

 Protection is handled by the Java Virtual Machine (JVM)

 A class is assigned a protection domain when it is loaded by

the JVM

 The protection domain indicates what operations the class

can (and cannot) perform

 If a library method is invoked that performs a privileged

operation, the stack is inspected to ensure the operation can

be performed by the library

 Generally, Java’s load-time and run-time checks enforce type

safety

 Classes effectively encapsulate and protect data and

methods from other classes

14.32 Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

Stack Inspection

Silberschatz, Galvin and Gagne © 2013 Operating System Concepts – 9th Edition

End of Chapter 14

