
Introduction to
C Unit Testing

(CUnit)

Brian Nielsen
Arne Skou
{bnielsen | ask}@cs.auc.dk

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

Unit Testing
Code that isn’t tested doesn’t work”
“Code that isn’t regression tested suffers
from code rot (breaks eventually)”
A unit testing framework enables efficient
and effective unit & regression testing

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

What is unit testing?
Unit testing

Testing a ‘unit’ of code, usually a class

Integration testing
Testing a module of code (e.g. a package)

Application testing
Testing the code as the user would see it
(black box)

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

Conventionally

Ad hoc manner
Manual stimulation & observation
E.g. adding a main method to a class, which
runs tests on the class
Uncomenting or deleting test code / drivers
/ printf /#ifdefs
Assert and debug builds

Code that isn’t tested doesn’t work
“If code has no automated test case
written for it to prove that it works, it
must be assumed not to work.”

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

Regression testing
New code and changes to old code can
affect the rest of the code base

“Affect” sometimes means “break”

Regression = Relapsed to a less perfect
or developed state.
Regression testing: Test that code
has not regressed
Regression testing is required for a
stable, maintainable code base

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

Refactoring
Refactoring is a behavior preserving
transformation
Refactoring is an excellent way to break
code.
Regression testing allows developers to
refactor safely – if the refactored code
passes the test suite, it works

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

Running automated tests
Regression testing “must” be automated

This requires they report pass/fail results in a
standardized way

Daily (Nightly) builds and testing
Clean & check out latest build tree
Run tests
Put results on a web page & send mail (if tests fail)

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

Why formalize unit
testing?

Ad hoc manner
Uncommenting or deleting test code /
drivers printf
Manual stimulation & observation

Axiom:
Code that isn’t tested doesn’t work
“If code has no automated test case written
for it to prove that it works, it must be
assumed not to work.”

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

What is a testing
framework?

A test framework is a software tool for
writing and running unit-tests
provides reusable test functionality
which:

Is easier to use
Is standardized
Enables automatic execution for regression
tests

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

What is a testing
framework?

A test framework is a software tool for
writing and running unit-tests
provides reusable test functionality
which:

Is easier to use
Is standardized
Enables automatic execution for regression
tests

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

Why Unit-testing
Framework

A test framework is a software tool for writing
and running unit-tests

Most errors can be found by programmer
Lightweight tool that uses the same language and
development environment as the programmer
Offers an easy, systematic, and comprehensive way of
organizing and executing tests

It is practical to collect and re-use test cases

Automatic Regression Testing
GUI-test case browser/runner
Test report generation

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

CUnit Testing
Each method is tested while developed

Create tests first
Start with simplest that works
Incrementally add code while testing

Tests serve as benchmark
Optimize and refactorize without worry

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

Basic Use of FrameWork
cunit.lib

myUnitTests.c

myUnit.c

C-
compiler

myUnitTests.exe

Test-report.xml

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

Creating a Test

Implement test functions
Run the test using a TestRunner
Group multiple TestCases using
TestSuite

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

What is xUnit?
A set of “Frameworks” for programming
and automated execution of test-cases
X stands for programming language

Most Famous is J-UNIT for Java
But exists for almost all programming
languages
C-unit, Cutest, Cpp-Unit, JUnit N-unit, …

A framework is a collection of classes,
procedures, and macros

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

xUNIT principles
Write test suite for each unit in the program.
All test can be executed (automatically) at any
time.
For each program modification all tests must be
passed before the modification is regarded as
complete - regression testing
Test First – implement later!
Originally based on “eXtreme Programming”
principles:

Lightweight software development methodology
– by programmers for programmers

TDD (Test Driven Development) cycle
1. Write test case, and check it fails
2. Write the new code
3. Check that the test passes (and maybe refactor, re-test)

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

Core parts
TestRunner

MyTest TestFixture

Test Suite Test Case

TestResult

uses

Collects
results

runs

•Test runner
•GUI runner

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

Concepts
Assertions

Boolean expression that compares expected
and actual results
The basic and smallest building-block

Test Case
A composition of concrete test procedures
May contain several assertions and test for
several test objectives
E.g all test of a particular function

Test Suite
Collection of related test cases
Can be executed automatically in a single
command

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

Test Case / suite
A collection of concrete test methods
A suite is a collection of test cases

// Registers the fixture into the 'registry'

CU_pSuite getTriangleSuite(){

CU_pSuite pSuite = NULL;

if ((NULL == CU_add_test(pSuite, "Tests classification of valid triangles", validClassification)) ||
(NULL == CU_add_test(pSuite, "Tests classification of invalid triangles", invalidClassification)) ||
(NULL == CU_add_test(pSuite, "Tests for string conversion", invalidClassification)) ||
(NULL == CU_add_test(pSuite, "Tests triangle main driver", testCheckTriangle))

){ . . .}

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

Assertion Examples
CU_ASSERT_EQUAL(rectangularTriangle,
classifyTriangle(13,12,5));
int actual_val;
CU_ASSERT(stringToInt("+0",&actual_val));
CPPUNIT_ASSERT_EQUAL(0, actual_val);
char* argv4[4]= {programName,"1","1","2"};
CU_ASSERT_EQUAL(string("Isosceles Triangle"),

string(checkTriangle(4,argv4)));

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

Test Cases Imp.
void validClassification(){
CU_ASSERT_EQUAL(rectangularTriangle, classifyTriangle(13,12,5));
CU_ASSERT_EQUAL(scaleneTriangle, classifyTriangle(15,10,5));

..

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

Driver File
int RunAllTests(void)
{

CU_pSuite pSuite = NULL;
pSuite=getTriangleSuite();

CU_set_output_filename("TriangleTest");
CU_list_tests_to_file();
CU_automated_run_tests();

}

int main(int argc, char* argv[])
{

return RunAllTests();
}

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

Test suite

Collection of test cases (or other test
suites) in a logical unit
Test Suites can be executed
automatically

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

Test Reports
C:\NovoUnitTest\TriangleDemo\cppunitDemo>Debug\cppunitDemo.exe
.F...

c:\novounittest\triangledemo\testtriangle\testtriangle.cpp(30):Assertion
Test name: TriangleTests::validClassification
equality assertion failed
- Expected: 1
- Actual : 4

Failures !!!
Run: 4 Failure total: 1 Failures: 1 Errors: 0

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

Test Runner XML file

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

Advice: xUnit style
Test cases exhibits isolation
Sets up an independent environment /
scenario and perform a distinct check
One check per test method ⇒ one
assert per test method

BUT consider amount of test code
declarations to be written (when a assert
fails the test method is stopped and no
further asserts are checked).
Test expected errors and exceptions

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

Advice: Application
Design and program for testability
Directly applicable to

Pure function libraries
API

(With some footwork also user interfaces,
network-, web-, and database
applications)

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

Advice: Version Control
Keep test code in a separate directory
Keep both tests-sources and
implemenation-source in version control
Don’t checkin unless version passes all
tests

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

Conclusions
Code that isn’t tested doesn’t work”
“Code that isn’t regression tested suffers
from code rot (breaks eventually)”
A unit testing framework enables efficient
and effective unit & regression testing
Use xUNIT to store and maintain all the
small tests that you write anyway
Write tests instead of playing with
debugger and printf – tests can be
automatically repeated

